
Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Sapienza University of Rome, Italy
Master in Computer Engineering

Markov Decision Processes and
Reinforcement Learning

Luca Iocchi

Luca Iocchi Markov Decision Processes and Reinforcement Learning 1 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Summary

Part I - Problem definition

Motivating examples

Markov Decision Processes (MDP)

Solution concept

One-state MDP

Exercise: Multi-armed bandit

Part II - Algorithms

Value iteration and policy iteration

Q-Learning

Sarsa

Exercises: Grid world, Breakout

Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction (2nd edition).
On-line: http://incompleteideas.net/book/the-book.html

Luca Iocchi Markov Decision Processes and Reinforcement Learning 2 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

PART I - Problem definition

Luca Iocchi Markov Decision Processes and Reinforcement Learning 3 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Motivating example: Tic-Tac-Toe

Luca Iocchi Markov Decision Processes and Reinforcement Learning 4 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Dynamic System

The classical view of a dynamic system

wk

vk

xk

zk

xk+1

hk

fk ∆

x : state
z : observations
w , v : noise

f : state transition model
h: observation model

Luca Iocchi Markov Decision Processes and Reinforcement Learning 5 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Reasoning vs. Learning in Dynamic Systems

wk

vk

xk

zk

xk+1

hk

fk ∆

Reasoning: given the model (f , h) and the current state xk , predict the
future (xk+T , zk+T).

Learning: given past experience (z0:k), determine the model (f , h).

Luca Iocchi Markov Decision Processes and Reinforcement Learning 6 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

State of a Dynamic System

The state x encodes:

knowledge needed to predict the future

knowledge gathered through operation

knowledge needed to pursue the goal

Examples:

configuration of a board game

configuration of robot devices

screenshot of a video-game

Luca Iocchi Markov Decision Processes and Reinforcement Learning 7 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Observability of the state

When the state is fully observable, the decision making problem for an
agent is to decide which action must be executed in a given state.
Let X be the set of all the possible states of our system.

Even when actions have non-deterministic effects (not possible to predict
the outcome before their execution), full observability allows the agent to
always know the current state (after the action has been executed).

Example: when playing chess, the agent cannot predict opponent’s move,
but it can observe it after it has been executed.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 8 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Solution concept

Given a finite set X = {x1, . . . , xn} of all the possible states of our system
and a finite set A = {a1, . . . , am} of all actions available to our agent, the
goal of the agent (solution concept) is to compute the function

π : X 7→ A

When the model of the system is not known, the agent has to learn the
function π.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 9 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Supervised vs. Reinforcement Learning

Supervised Learning
Learning a function f : X → Y , given

D = {〈xi , yi 〉}

Reinforcement Learning
Learning a behavior function π : X→ A, given

D = {〈x1, a1, r1, . . . , xn, an, rn〉(i)}

Luca Iocchi Markov Decision Processes and Reinforcement Learning 10 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Supervised vs. Reinforcement Learning

Collecting a data set for RL

D = {〈x1, a1, r1, . . . , xn, an, rn〉(i)}

is much easier, since ai must not be the best action to be executed in xi
and rewards can be sporadic and given in the future.

Example: ri = 0, ∀i = 0, . . . , n − 1, and rn 6= 0, only for final states xn.

RL algorithms effectively solve the credit assignment problem (assignment
of future rewards to sequences of actions).

Luca Iocchi Markov Decision Processes and Reinforcement Learning 11 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Markov property

Markov property

Once the current state is known, the evolution of the dynamic system
does not depend on the history of states, actions and observations.

The current state contains all the information needed to predict the
future.

Future states are conditionally independent of past states and past
observations given the current state.

The knowledge about the current state makes past, present and
future observations statistically independent.

Markov process is a process that has the Markov property.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 12 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Markov Decision Processes (MDP)

MDP = 〈X,A, δ, r〉

X is a finite set of states

A is a finite set of actions

P(x′|x, a) is a probability distribution over transitions

r : X× A× X→ < is a reward function

Graphical model

Luca Iocchi Markov Decision Processes and Reinforcement Learning 13 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

One-state Markov Decision Processes (MDP)

Multi-armed bandit

MDP = 〈{x0},A, δ, r〉

x0 unique state

A finite set of actions

δ(x0, ai) = x0, ∀ai ∈ A transition function

r(x0, ai , x0) = r(ai) reward function

Optimal policy: π∗(x0) = ai

Luca Iocchi Markov Decision Processes and Reinforcement Learning 14 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Deterministic One-state MDP

If r(ai) is deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A r(ai)

Luca Iocchi Markov Decision Processes and Reinforcement Learning 15 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Deterministic One-state MDP

If r(ai) is deterministic and unknown, then

Algorithm:

1 for each ai ∈ A
execute ai
collect reward r(i) and store it

2 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A| r(i)

Note: exactly |A| iterations are needed.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 16 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Non-Deterministic One-state MDP

If r(ai) is non-deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A E [r(ai)]

Example:

If r(ai) = N (µi , σi), then

π∗(x0) = ai , with i = argmaxi=1...|A| µi

Luca Iocchi Markov Decision Processes and Reinforcement Learning 17 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Non-Deterministic One-state MDP

If r(ai) is non-deterministic and unknown, then

Algorithm:

1 Initialize a data structure Θ
2 For each time t = 1, . . . ,T (until termination condition)

choose an action a(t) ∈ A
execute a(t)

collect reward r(t)

Update the data structure Θ

3 Optimal policy: π∗(x0) = . . ., according to the data structure Θ

Note: many iterations (T >> |A|) are needed.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 18 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Non-Deterministic One-state MDP

Example:

If r(ai) is non-deterministic and unknown and r(ai) = N (µi , σi), then

Algorithm:

1 Initialize Θ(0)[i]← 0 and c[i]← 0, i = 1...|A|
2 For each time t = 1, . . . ,T (until termination condition)

choose an index ı̂ for action a(t) = âı ∈ A
execute a(t) and collect reward r(t)

increment c [̂ı]
update Θ(t) [̂ı]← Θ(t−1) [̂ı] + 1

c [̂ı] (r(t) −Θ(t−1) [̂ı])

3 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A|Θ(T)[i]

Luca Iocchi Markov Decision Processes and Reinforcement Learning 19 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Exploitation vs Exploration

Exploitation: choose an action that is believed to be the best one in the
current state

Exploration: choose a random action

A proper balance between exploration and exploitation is needed in order
to realize an effective RL system.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 20 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Exercise

Multi-armed bandit

Luca Iocchi Markov Decision Processes and Reinforcement Learning 21 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

PART II - Algorithms

Luca Iocchi Markov Decision Processes and Reinforcement Learning 22 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

MDP Solution Concept

Given an MDP 〈X,A, δ, r〉, find an optimal policy.

Policy is a function

π : X→ A

For each state x ∈ X, π(x) ∈ A is the optimal action to be executed in
such state.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 23 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

MDP Solution Concept

Optimality is defined with respect to maximizing the (expected value of
the) cumulative discounted reward.

V π(x1) ≡ E [r̄1 + γ r̄2 + γ2r̄3 + . . .]

where r̄t = r(xt , at , xt+1), at = π(xt), and γ ∈ [0, 1] is the discount factor
for future rewards.

Optimal policy: π∗ ≡ argmaxπ V
π(x) , ∀x ∈ X

Luca Iocchi Markov Decision Processes and Reinforcement Learning 24 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Optimal policy

π∗ is an optimal policy iff for any other policy π

V π∗(x) ≥ V π(x),∀x

For infinite horizon problems, a stationary MDP always has an optimal
stationary policy.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 25 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Planning and Learning in MDP

Problem: MDP 〈X,A, δ, r〉

Solution: Policy π : X→ A

If the MDP 〈X,A, δ, r〉 is completely known → reasoning or planning

If the MDP 〈X,A, δ, r〉 is not completely known → learning

Luca Iocchi Markov Decision Processes and Reinforcement Learning 26 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example

An agent can move in this environment by just going left and right with
non-deterministic effects of the actions and noisy sensors.

The goal is to reach the right side starting from the left side, avoiding
hitting the obstacles.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 27 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example

Markov Decision Process (MPD) with:

states xt = (r , c) coordinates in the world,

observations (emissions) zt = (zUt , z
D
t , z

L
t , z

R
t) noisy sensor of

obstacles in the U,D,L,R directions,

controls/actions A = {Left,Right},

Luca Iocchi Markov Decision Processes and Reinforcement Learning 28 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: model of the problem

Transition probability:

P(xt+1 = (r ′, c ′)|xt = (r , c), a = Right) =

=



0, if outside the map
0, if |r ′ − r | > 1or |c ′ − c | > 1
γF , if ¬obstacle(r , c + 1) ∧ c ′ = c + 1 ∧ r ′ = r
1−γF

2 , if ¬obstacle(r , c + 1) ∧ c ′ = c + 1 ∧ |r ′ − r | = 1
γB , if obstacle(r , c + 1) ∧ c ′ = c − 1 ∧ r ′ = r
1−γB

2 , if obstacle(r , c + 1) ∧ c ′ = c − 1 ∧ |r ′ − r | = 1

Luca Iocchi Markov Decision Processes and Reinforcement Learning 29 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: model of the problem

Observation probability:

P(zt |xt = (r , c)) = P((zUt , z
D
t , z

L
t , z

R
t)|xt = (r , c))

=
∏
λ

P(zλt |xt = (r , c))

P(zRt |xt = (r , c)) =

{
δ, if obstacle(r , c + 1)
1− δ, otherwise

With similar terms for the other directions.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 30 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: reward function

R(x = (r , c), a, x′ = (r ′, c ′)) =


0, if a = Right ∧ obstacle(r , c + 1)
0, if a = Left ∧ obstacle(r , c − 1)
c ′, if a = Left
c ′2, if a = Right

Luca Iocchi Markov Decision Processes and Reinforcement Learning 31 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: solutions

Computing the policy π : X 7→ A

MDP known
value iteration algorithm

MDP unknown
Reinforcement learning algorithm: SARSA

Luca Iocchi Markov Decision Processes and Reinforcement Learning 32 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Planning with MDP

Given MDP 〈X,A, δ, r〉 is completely known, compute optimal polici
π : x 7→ A

Value iteration algorithms
Policy iteration algorithms

Luca Iocchi Markov Decision Processes and Reinforcement Learning 33 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Value function (V)

Deterministic case

V π(x) ≡ r1 + γr2 + γ2r3 + . . .

V π
(t)(x) = rt + γrt+1 + γ2rt+2 + . . .

V π
(t)(x) = rt + γ(rt+1 + γ(rt+2 + . . .)) = rt + γV π

(t+1)(x′)

Non-deterministic/stochastic case:

V π(x) ≡ E [r1 + γr2 + γ2r3 + . . .] = . . .

. . . =
∑

x′

P(x′|x, π(x))(rt + γV π(x′))

rt = r(x, π(x), x′)
Luca Iocchi Markov Decision Processes and Reinforcement Learning 34 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Action-value function (Q)

Qπ(x, a): expected value when executing a in the state x and then act
according to π.

Qπ(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV π(x′))

Thus,

V π(x) = Qπ(x, π(x))

Luca Iocchi Markov Decision Processes and Reinforcement Learning 35 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

V and Q for the optimal policy

For an optimal policy π∗

V ∗(x) ≡ V π∗(x)

Q∗(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV ∗(x′))

V ∗(x) = max
a∈A

Q∗(x, a)

π∗(x) = argmax
a∈A

Q∗(x, a)

Luca Iocchi Markov Decision Processes and Reinforcement Learning 36 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Dynamic programming

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize V(0)(x) and π(0)(x) randomly
for t = 1, . . . ,T // until a termination condition

for each x ∈ X:

1 â = π(t−1)(x)
2 V(t)(x)←

∑
x′ P(x′|x, â) (r(x, â, x′) + γV(t−1)(x′))

3 π(t)(x)←
argmaxa′∈A

∑
x′ P(x′|x, a′) (r(x, a′, x′) + γV(t)(x′))

return π∗(x) = π(T)(x)

Termination condition: no changes in π

Luca Iocchi Markov Decision Processes and Reinforcement Learning 37 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Value Iteration

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize V(0)(x), Q(0)(x, a) randomly (or to zero)
for t = 1, . . . ,T // until a termination condition

1 Q(t)(x, a)←
∑

x′ P(x′|x, a) (r(x, a, x′) + γV(t−1)(x′))

2 V(t)(x)← maxa∈A Q(t)(x, a)

return π∗(x) = argmaxa∈A Q(T)(x, a)

Termination condition: ∀x , V(t)(x)− V(t−1)(x) < δ

Luca Iocchi Markov Decision Processes and Reinforcement Learning 38 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Policy Iteration

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize the policy π0(x) randomly
for t = 1, . . . ,T // until a termination condition

1 Solve the linear system in V (x):
V (x) =

∑
x′ P(x′|x, π(t−1)(x)) (r(x, π(t−1)(x), x′) + γV (x′))

2 π(t)(x)← argmaxa∈A

∑
x′ P(x′|x, a) (r(x, a, x′) + γV (x′))

return π∗(x) = π(T)(x)

Termination condition: no changes in π

Luca Iocchi Markov Decision Processes and Reinforcement Learning 39 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Learning with MDP

Given an agent accomplishing a task according to an MDP 〈X,A, δ, r〉,
for which functions δ and r are unknown to the agent,

determine the optimal policy π∗

Note: This is not a supervised learning approach!

Target function is π : X→ A

but we do not have training examples {(x(i), π(x(i)))}
training examples are in the form 〈(x(1), a(1), r(1)), . . . , (x(t), a(t), r(t))〉

Luca Iocchi Markov Decision Processes and Reinforcement Learning 40 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Agent’s Learning Task

Since δ and r are not known, the agent cannot predict the effect of its
actions. But it can execute them and then observe the outcome.

The learning task is thus performed by repeating these steps:

choose an action

execute the chosen action

observe the resulting new state

collect the reward

Luca Iocchi Markov Decision Processes and Reinforcement Learning 41 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Approaches to Learning with MDP

Value iteration
(estimate the Value function and then compute π)

Policy iteration
(estimate directly π)

Luca Iocchi Markov Decision Processes and Reinforcement Learning 42 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Learning through value iteration

The agent could learn the value function V π∗(x) (written as V ∗(x))

From which it could determine the optimal policy:

π∗(x) = argmax
a∈A

[r(x, a) + γV ∗(δ(x, a))]

However, this policy cannot be computed in this way because δ and r are
not known.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 43 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Q Function

Qπ(x, a): expected value when executing a in the state x and then act
according to π.

Qπ(x, a) ≡ r(x, a) + γV π(δ(x, a))

Qπ(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV π(x′))

If the agent learns Q, then it can determine the optimal policy without
knowing δ and r .

π∗(x) = argmax
a∈A

Q(x, a)

Luca Iocchi Markov Decision Processes and Reinforcement Learning 44 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Training Rule to Learn Q

Deterministic case:

Q(xt , at) = r(xt , at) + γmax
a′∈A

Q(xt+1, a
′)

Let Q̂ denote learner’s current approximation to Q.

Training rule:

Q̂(x, a)← r̄ + γmax
a′

Q̂(x′, a′)

where r̄ is the immediate reward and x′ is the state resulting from applying
action a in state x.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 45 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Q Learning Algorithm for Deterministic MDPs

1 for each x, a initialize table entry Q̂(0)(x, a)← 0

2 observe current state x
3 for each time t = 1, . . . ,T (until termination condition)

choose an action a

execute the action a

observe the new state x′

collect the immediate reward r̄

update the table entry for Q̂(x, a) as follows:

Q̂(t)(x, a)← r̄ + γmax
a′∈A

Q̂(t−1)(x′, a′)

x← x′

4 Optimal policy: π∗(x) = argmaxa∈A Q(T)(x, a)

Note: not using δ and r , but just observing new state x′ and immediate
reward r̄ , after the execution of the chosen action.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 46 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: Grid World

S0

G

S1 S2

S4
S3

100

100

0

0

0 0

0 S0

G

S1 S2

S4
S3

100

100

90

90

81

81

90

81

81

72.9

72.9

81

MDP Q̂

Luca Iocchi Markov Decision Processes and Reinforcement Learning 47 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: Grid World

G90

90 100

100

81 S0

G

S1 S2

S4
S3

V ∗(x) values One optimal policy

Luca Iocchi Markov Decision Processes and Reinforcement Learning 48 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Non-deterministic Q-learning

Q learning generalizes to non-deterministic worlds with training rule

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γmax
a′

Q̂n−1(x′, a′)− Q̂n−1(x, a)]

where

α = αn−1(x, a) =
1

1 + visitsn−1(x, a)

visitsn(x, a): total number of times state-action pair (x, a) has been visited
up to n-th iteration

Luca Iocchi Markov Decision Processes and Reinforcement Learning 49 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

SARSA

SARSA is based on the tuple < s, a, r , s ′, a′ > (< x, a, r , x′, a′ > in our
notation).

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γQ̂n−1(x′, a′)− Q̂n−1(x, a)]

a′ is chosen according to a policy based on current estimate of Q.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 50 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Experimentation Strategies

How actions are chosen by the agents?
Exploitation: select action a that maximizes Q̂(x, a)
Exploration: select action a with low value of Q̂(x, a)

ε-greedy strategy

Given, 0 ≤ ε ≤ 1,
select a random action with probability ε
select the best action with probability 1− ε

ε can decrease over time (first exploration, then exploitation).

Luca Iocchi Markov Decision Processes and Reinforcement Learning 51 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Experimentation Strategies

soft-max strategy

actions with higher Q̂ values are assigned higher probabilities, but every
action is assigned a non-zero probability.

P(ai |x) =
kQ̂(x,ai)∑
j k

Q̂(x,aj)

k > 0 determines how strongly the selection favors actions with high Q̂
values.
k may increase over time (first exploration, then exploitation).

Luca Iocchi Markov Decision Processes and Reinforcement Learning 52 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Convergence

RL algorithms find the optimal policy when every pair state, action is
visited infinitely often.

The choice of the action to execute at each step is critical to find the
optimal solution.

Sometimes sub-optimal solutions or average-good solutions are acceptable.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 53 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Evaluating Reinforcement Learning Agents

Cumulative reward plot may be very noisy (due to exploration phases).
A better approach could be:

Repeat until termination condition:

1 Execute k steps of learning

2 Evaluate the current policy πk (average and stddev of cumulative
reward obtained in d runs with no exploration)

Luca Iocchi Markov Decision Processes and Reinforcement Learning 54 / 55

Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Exercise

Algorithm comparison on grid world.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 55 / 55

