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PART I - Problem definition
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Motivating example: Tic-Tac-Toe
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Dynamic System

The classical view of a dynamic system
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x : state
z : observations
w , v : noise

f : state transition model
h: observation model
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Reasoning vs. Learning in Dynamic Systems
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Reasoning: given the model (f , h) and the current state xk , predict the
future (xk+T , zk+T ).

Learning: given past experience (z0:k), determine the model (f , h).
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State of a Dynamic System

The state x encodes:

knowledge needed to predict the future

knowledge gathered through operation

knowledge needed to pursue the goal

Examples:

configuration of a board game

configuration of robot devices

screenshot of a video-game
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Observability of the state

When the state is fully observable, the decision making problem for an
agent is to decide which action must be executed in a given state.
Let X be the set of all the possible states of our system.

Even when actions have non-deterministic effects (not possible to predict
the outcome before their execution), full observability allows the agent to
always know the current state (after the action has been executed).

Example: when playing chess, the agent cannot predict opponent’s move,
but it can observe it after it has been executed.
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Solution concept

Given a finite set X = {x1, . . . , xn} of all the possible states of our system
and a finite set A = {a1, . . . , am} of all actions available to our agent, the
goal of the agent (solution concept) is to compute the function

π : X 7→ A

When the model of the system is not known, the agent has to learn the
function π.

Luca Iocchi Markov Decision Processes and Reinforcement Learning 9 / 55



Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Supervised vs. Reinforcement Learning

Supervised Learning
Learning a function f : X → Y , given

D = {〈xi , yi 〉}

Reinforcement Learning
Learning a behavior function π : X→ A, given

D = {〈x1, a1, r1, . . . , xn, an, rn〉(i)}
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Supervised vs. Reinforcement Learning

Collecting a data set for RL

D = {〈x1, a1, r1, . . . , xn, an, rn〉(i)}

is much easier, since ai must not be the best action to be executed in xi
and rewards can be sporadic and given in the future.

Example: ri = 0, ∀i = 0, . . . , n − 1, and rn 6= 0, only for final states xn.

RL algorithms effectively solve the credit assignment problem (assignment
of future rewards to sequences of actions).
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Markov property

Markov property

Once the current state is known, the evolution of the dynamic system
does not depend on the history of states, actions and observations.

The current state contains all the information needed to predict the
future.

Future states are conditionally independent of past states and past
observations given the current state.

The knowledge about the current state makes past, present and
future observations statistically independent.

Markov process is a process that has the Markov property.
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Markov Decision Processes (MDP)

MDP = 〈X,A, δ, r〉

X is a finite set of states

A is a finite set of actions

P(x′|x, a) is a probability distribution over transitions

r : X× A× X→ < is a reward function

Graphical model
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One-state Markov Decision Processes (MDP)

Multi-armed bandit

MDP = 〈{x0},A, δ, r〉

x0 unique state

A finite set of actions

δ(x0, ai ) = x0, ∀ai ∈ A transition function

r(x0, ai , x0) = r(ai ) reward function

Optimal policy: π∗(x0) = ai
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Deterministic One-state MDP

If r(ai ) is deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A r(ai )

Luca Iocchi Markov Decision Processes and Reinforcement Learning 15 / 55



Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Deterministic One-state MDP

If r(ai ) is deterministic and unknown, then

Algorithm:

1 for each ai ∈ A
execute ai
collect reward r(i) and store it

2 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A| r(i)

Note: exactly |A| iterations are needed.
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Non-Deterministic One-state MDP

If r(ai ) is non-deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A E [r(ai )]

Example:

If r(ai ) = N (µi , σi ), then

π∗(x0) = ai , with i = argmaxi=1...|A| µi
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Non-Deterministic One-state MDP

If r(ai ) is non-deterministic and unknown, then

Algorithm:

1 Initialize a data structure Θ
2 For each time t = 1, . . . ,T (until termination condition)

choose an action a(t) ∈ A
execute a(t)

collect reward r(t)

Update the data structure Θ

3 Optimal policy: π∗(x0) = . . ., according to the data structure Θ

Note: many iterations (T >> |A|) are needed.
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Non-Deterministic One-state MDP

Example:

If r(ai ) is non-deterministic and unknown and r(ai ) = N (µi , σi ), then

Algorithm:

1 Initialize Θ(0)[i ]← 0 and c[i ]← 0, i = 1...|A|
2 For each time t = 1, . . . ,T (until termination condition)

choose an index ı̂ for action a(t) = âı ∈ A
execute a(t) and collect reward r(t)

increment c [̂ı]
update Θ(t) [̂ı]← Θ(t−1) [̂ı] + 1

c [̂ı] ( r(t) −Θ(t−1) [̂ı] )

3 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A|Θ(T )[i ]
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Exploitation vs Exploration

Exploitation: choose an action that is believed to be the best one in the
current state

Exploration: choose a random action

A proper balance between exploration and exploitation is needed in order
to realize an effective RL system.
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Exercise

Multi-armed bandit
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PART II - Algorithms
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MDP Solution Concept

Given an MDP 〈X,A, δ, r〉, find an optimal policy.

Policy is a function

π : X→ A

For each state x ∈ X, π(x) ∈ A is the optimal action to be executed in
such state.
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MDP Solution Concept

Optimality is defined with respect to maximizing the (expected value of
the) cumulative discounted reward.

V π(x1) ≡ E [r̄1 + γ r̄2 + γ2r̄3 + . . .]

where r̄t = r(xt , at , xt+1), at = π(xt), and γ ∈ [0, 1] is the discount factor
for future rewards.

Optimal policy: π∗ ≡ argmaxπ V
π(x) , ∀x ∈ X
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Optimal policy

π∗ is an optimal policy iff for any other policy π

V π∗(x) ≥ V π(x),∀x

For infinite horizon problems, a stationary MDP always has an optimal
stationary policy.
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Planning and Learning in MDP

Problem: MDP 〈X,A, δ, r〉

Solution: Policy π : X→ A

If the MDP 〈X,A, δ, r〉 is completely known → reasoning or planning

If the MDP 〈X,A, δ, r〉 is not completely known → learning

Luca Iocchi Markov Decision Processes and Reinforcement Learning 26 / 55



Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example

An agent can move in this environment by just going left and right with
non-deterministic effects of the actions and noisy sensors.

The goal is to reach the right side starting from the left side, avoiding
hitting the obstacles.
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Example

Markov Decision Process (MPD) with:

states xt = (r , c) coordinates in the world,

observations (emissions) zt = (zUt , z
D
t , z

L
t , z

R
t ) noisy sensor of

obstacles in the U,D,L,R directions,

controls/actions A = {Left,Right},
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Example: model of the problem

Transition probability:

P(xt+1 = (r ′, c ′)|xt = (r , c), a = Right) =

=



0, if outside the map
0, if |r ′ − r | > 1or |c ′ − c | > 1
γF , if ¬obstacle(r , c + 1) ∧ c ′ = c + 1 ∧ r ′ = r
1−γF

2 , if ¬obstacle(r , c + 1) ∧ c ′ = c + 1 ∧ |r ′ − r | = 1
γB , if obstacle(r , c + 1) ∧ c ′ = c − 1 ∧ r ′ = r
1−γB

2 , if obstacle(r , c + 1) ∧ c ′ = c − 1 ∧ |r ′ − r | = 1

Luca Iocchi Markov Decision Processes and Reinforcement Learning 29 / 55



Sapienza University of Rome, Italy - Machine Learning (2017/2018)

Example: model of the problem

Observation probability:

P(zt |xt = (r , c)) = P((zUt , z
D
t , z

L
t , z

R
t )|xt = (r , c))

=
∏
λ

P(zλt |xt = (r , c))

P(zRt |xt = (r , c)) =

{
δ, if obstacle(r , c + 1)
1− δ, otherwise

With similar terms for the other directions.
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Example: reward function

R(x = (r , c), a, x′ = (r ′, c ′)) =


0, if a = Right ∧ obstacle(r , c + 1)
0, if a = Left ∧ obstacle(r , c − 1)
c ′, if a = Left
c ′2, if a = Right
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Example: solutions

Computing the policy π : X 7→ A

MDP known
value iteration algorithm

MDP unknown
Reinforcement learning algorithm: SARSA
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Planning with MDP

Given MDP 〈X,A, δ, r〉 is completely known, compute optimal polici
π : x 7→ A

Value iteration algorithms
Policy iteration algorithms
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Value function (V)

Deterministic case

V π(x) ≡ r1 + γr2 + γ2r3 + . . .

V π
(t)(x) = rt + γrt+1 + γ2rt+2 + . . .

V π
(t)(x) = rt + γ(rt+1 + γ(rt+2 + . . .)) = rt + γV π

(t+1)(x′)

Non-deterministic/stochastic case:

V π(x) ≡ E [r1 + γr2 + γ2r3 + . . .] = . . .

. . . =
∑

x′

P(x′|x, π(x))(rt + γV π(x′))

rt = r(x, π(x), x′)
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Action-value function (Q)

Qπ(x, a): expected value when executing a in the state x and then act
according to π.

Qπ(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV π(x′))

Thus,

V π(x) = Qπ(x, π(x))
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V and Q for the optimal policy

For an optimal policy π∗

V ∗(x) ≡ V π∗(x)

Q∗(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV ∗(x′))

V ∗(x) = max
a∈A

Q∗(x, a)

π∗(x) = argmax
a∈A

Q∗(x, a)
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Dynamic programming

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize V(0)(x) and π(0)(x) randomly
for t = 1, . . . ,T // until a termination condition

for each x ∈ X:

1 â = π(t−1)(x)
2 V(t)(x)←

∑
x′ P(x′|x, â) (r(x, â, x′) + γV(t−1)(x′))

3 π(t)(x)←
argmaxa′∈A

∑
x′ P(x′|x, a′) (r(x, a′, x′) + γV(t)(x′))

return π∗(x) = π(T )(x)

Termination condition: no changes in π
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Value Iteration

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize V(0)(x), Q(0)(x, a) randomly (or to zero)
for t = 1, . . . ,T // until a termination condition

1 Q(t)(x, a)←
∑

x′ P(x′|x, a) (r(x, a, x′) + γV(t−1)(x′))

2 V(t)(x)← maxa∈A Q(t)(x, a)

return π∗(x) = argmaxa∈A Q(T )(x, a)

Termination condition: ∀x , V(t)(x)− V(t−1)(x) < δ
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Policy Iteration

Input: known MDP 〈X,A, δ, r〉
Output: optimal policy π∗

Initialize the policy π0(x) randomly
for t = 1, . . . ,T // until a termination condition

1 Solve the linear system in V (x):
V (x) =

∑
x′ P(x′|x, π(t−1)(x)) (r(x, π(t−1)(x), x′) + γV (x′))

2 π(t)(x)← argmaxa∈A

∑
x′ P(x′|x, a) (r(x, a, x′) + γV (x′))

return π∗(x) = π(T )(x)

Termination condition: no changes in π
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Learning with MDP

Given an agent accomplishing a task according to an MDP 〈X,A, δ, r〉,
for which functions δ and r are unknown to the agent,

determine the optimal policy π∗

Note: This is not a supervised learning approach!

Target function is π : X→ A

but we do not have training examples {(x(i), π(x(i)))}
training examples are in the form 〈(x(1), a(1), r(1)), . . . , (x(t), a(t), r(t))〉
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Agent’s Learning Task

Since δ and r are not known, the agent cannot predict the effect of its
actions. But it can execute them and then observe the outcome.

The learning task is thus performed by repeating these steps:

choose an action

execute the chosen action

observe the resulting new state

collect the reward
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Approaches to Learning with MDP

Value iteration
(estimate the Value function and then compute π)

Policy iteration
(estimate directly π)
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Learning through value iteration

The agent could learn the value function V π∗(x) (written as V ∗(x))

From which it could determine the optimal policy:

π∗(x) = argmax
a∈A

[ r(x, a) + γV ∗(δ(x, a)) ]

However, this policy cannot be computed in this way because δ and r are
not known.
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Q Function

Qπ(x, a): expected value when executing a in the state x and then act
according to π.

Qπ(x, a) ≡ r(x, a) + γV π(δ(x, a))

Qπ(x, a) ≡
∑

x′

P(x′|x, a)(r(x, a, x′) + γV π(x′))

If the agent learns Q, then it can determine the optimal policy without
knowing δ and r .

π∗(x) = argmax
a∈A

Q(x, a)
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Training Rule to Learn Q

Deterministic case:

Q(xt , at) = r(xt , at) + γmax
a′∈A

Q(xt+1, a
′)

Let Q̂ denote learner’s current approximation to Q.

Training rule:

Q̂(x, a)← r̄ + γmax
a′

Q̂(x′, a′)

where r̄ is the immediate reward and x′ is the state resulting from applying
action a in state x.
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Q Learning Algorithm for Deterministic MDPs

1 for each x, a initialize table entry Q̂(0)(x, a)← 0

2 observe current state x
3 for each time t = 1, . . . ,T (until termination condition)

choose an action a

execute the action a

observe the new state x′

collect the immediate reward r̄

update the table entry for Q̂(x, a) as follows:

Q̂(t)(x, a)← r̄ + γmax
a′∈A

Q̂(t−1)(x′, a′)

x← x′

4 Optimal policy: π∗(x) = argmaxa∈A Q(T )(x, a)

Note: not using δ and r , but just observing new state x′ and immediate
reward r̄ , after the execution of the chosen action.
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Example: Grid World
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Example: Grid World

G90

90 100
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81 S0
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V ∗(x) values One optimal policy
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Non-deterministic Q-learning

Q learning generalizes to non-deterministic worlds with training rule

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γmax
a′

Q̂n−1(x′, a′)− Q̂n−1(x, a)]

where

α = αn−1(x, a) =
1

1 + visitsn−1(x, a)

visitsn(x, a): total number of times state-action pair (x, a) has been visited
up to n-th iteration
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SARSA

SARSA is based on the tuple < s, a, r , s ′, a′ > ( < x, a, r , x′, a′ > in our
notation).

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γQ̂n−1(x′, a′)− Q̂n−1(x, a)]

a′ is chosen according to a policy based on current estimate of Q.
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Experimentation Strategies

How actions are chosen by the agents?
Exploitation: select action a that maximizes Q̂(x, a)
Exploration: select action a with low value of Q̂(x, a)

ε-greedy strategy

Given, 0 ≤ ε ≤ 1,
select a random action with probability ε
select the best action with probability 1− ε

ε can decrease over time (first exploration, then exploitation).
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Experimentation Strategies

soft-max strategy

actions with higher Q̂ values are assigned higher probabilities, but every
action is assigned a non-zero probability.

P(ai |x) =
kQ̂(x,ai )∑
j k

Q̂(x,aj )

k > 0 determines how strongly the selection favors actions with high Q̂
values.
k may increase over time (first exploration, then exploitation).
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Convergence

RL algorithms find the optimal policy when every pair state, action is
visited infinitely often.

The choice of the action to execute at each step is critical to find the
optimal solution.

Sometimes sub-optimal solutions or average-good solutions are acceptable.
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Evaluating Reinforcement Learning Agents

Cumulative reward plot may be very noisy (due to exploration phases).
A better approach could be:

Repeat until termination condition:

1 Execute k steps of learning

2 Evaluate the current policy πk (average and stddev of cumulative
reward obtained in d runs with no exploration)
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Exercise

Algorithm comparison on grid world.
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