[= 3
FONDAZIONE —J
AI I LAN :(BRUNOKE)SSLER § I SO
4 E F U T R E L o7 PLANNING SCHEDULING
U O N N ow GE AND OPTIMIZATION

Automated Planning in
Practice:

The Unified Planning Library

Andrea Micheli

Most of the material was prepared in collaboration with Gabriele Roger,
Arthur Bit-Monnot and Sebastian Stock and presented at ICAPS 2023

The AlIPlan4EU project is funded by the European Commission - H2020
research and innovation programme under grant agreement No 101016442

<insitutional-slides>

Q@ AIPLAN

About me 4EU

My name is Andrea Micheli.

PhD in Computer Science from the University of Trento and
Fondazione Bruno Kessler (2016)

o Visiting scientist at NASA Ames Research Center (Mountain View, California) — D\ azon
BRUNO KESSLER
Head of the Planning Scheduling and Optimization Unit at BT

Fondazione Bruno Kessler (Trento, Italy)

o 9 members and growing! § PSO

PLANNING SCHEDULING

Coordinator of the AlIPlan4EU project AND OPTIMIZATION

European Research Council (ERC) Principal Investigator

Fondazione Bruno Kessler
About us

Fondazione Bruno Kessler (FBK) is a research
not-for-profit public interest entity result of a history that
is more than half a century old.

FBK aims to excellence in science and technology with
particular emphasis on interdisciplinary approaches and to
the applicative dimension.

=14

* 11 research Centers
e 410 researchers

e 2 specialized libraries
e 7 laboratories

FBK
Research Centers

CENTER FOR
CYBERSECURITY

CENTER FOR
DIGITAL SOCIETY

CENTER FOR DIGITAL
INDUSTRY

CENTER FOR DIGITAL
HEALTH & WELLBEING

CENTER FOR HEALTH
EMERGENCIES

=14

EUROPEAN CENTER FOR THEORETICAL
STUDIES IN NUCLEAR PHYSICS AND
RELATED AREAS

ITALIAN-GERMAN
HISTORICAL INSTITUTE

INSTITUTE FOR THE EVALUATION
OF PUBLIC POLICIES

-3¢

FONDAZIONE

BRUNO KESSLER

CENTER FOR
RELIGIOUS STUDIES

CENTER FOR
SENSORS & DEVICES

CENTER FOR SUSTAINABLE

ENERGY I

Digital Industry

At a glance 9Ky People
3D Optical Metrology 5 ;?1S§§]Efafg1p;§tsc:ggz,sRA, PhD)
Technologies of Vision v 24 research assistants

v/ 34 phd students

Software Engineering

o - o

Machine Translation ﬁ Scientific Staff
v/ 8 Associate Professors
Data Science for Industry and v 6 Full Professors
Physics
Formal Methods
Budget

Planning Scheduling and % v Costs: 6.1 M€
Optimization v Revenues 4.3 M€

v/ Self-funding: 70%
Open loT

</insitutional-slides>

. AIPLAN
Seminar Agenda Iy

1. Introduction: genesis of the Unified Planning library and scope

2. Architecture and design principles: Operation modes and API structure
5. How to model and solve problems

4. Advanced features (if time permits)

5. Applications and conclusions

Let’s make this 04/?E'BLAN

seminar interactive!

e Ask questions anytime!
e | will run the code live

e Trythe notebooks on your laptop!
o Feel free to edit the code!

04 PLAN

Tutorial resources available at: https://tinyurl.com/demoup

You can either run the examples of Google colab (Google account required, no
installation needed) or on your local machine

Basic installation
o aptinstall graphviz graphviz-dev (for plotting)
o aptinstall openjdk-17-jre (only needed if you want to use ENHSP)
o python3 -m pip install unified-planning[engines,plot]

https://tinyurl.com/demoup

Introduction

Planning, Scheduling and Optimization

Given a model of a system and a goal to be reached under constraints,
find a course of actions/schedule to drive the system to the goal.

- 0 = ‘\?
/V (Optimal)
Planner / Scheduler / Optimizer Plan/Schedule

[|
- :(FONDAZIONE
BRUNO KESSLER

Initial Configuration and

Objectives

General system architecture

Goals

Not only plan
generation/deliberation!

Support the components of
a general autonomy
architecture based on
planning

Plan

Replan

Actuations

SUOIBAISSQO

—
— : FONDAZIONE
BRUNO KESSLER

FUTURE BUILT
ON KNOWLEDGE

= PSO

PLANNING SCHEDULING
AND OPTIMIZATION

What the Heck is “unified-planning”?

“Permissively open-source
python library
for the modeling,
manipulation
and solving

of several kinds of planning problems”

from unified_planning.shortcuts import *

X = Fluent("x")

a = InstantaneousAction("a")
a.add_precondition(Not(x))
a.add_effect(x, True)

problem

problem.
problem.
problem.
problem.

= Problem("basic")
add_fluent(x)

add_action(a)
set_initial_value(x, False)
add_goal(x)

AIPLAN
4EU

with OneshotPlanner(problem_kind=problem.kind) as planner:
result = planner.solve(problem)
if result.plan:

print(f"{planner.name} found a plan: {result.plan}")

else:

https://github.com/aiplan4eu/unified-planning

https://unified-planning.readthedocs.io

print("No plan found.")

https://github.com/aiplan4eu/unified-planning
https://unified-planning.readthedocs.io

AIPLAN
Key Features 4EU

e Diverse planning problem classes supported
o Action-based (Classical, Numeric, Temporal); (Tfemporal) Hierarchical Task Networks; Multi-agent;
Resource scheduling; Contingent planning

e Non only plan generation: Operation Modes
o OneshotPlanner, PlanValidator, SequentialSimulator, Compiler, AnytimePlanner, Replanner,
PlanRepairer, PortfolioSelector

e Automatic ‘requirements”: ProblemKind

e Different types of plans supported
o Sequential, Partial-order, Time-triggered, Simple Temporal Network, Hierarchical

e Interoperability with formal languages and other libs
o PDDL,ANML, Tarski, GRPC

e Advanced features
o Meta-engines, simulated effects, custom heuristics

Genesis and History of the Library

The AlPlan4EU project starts

The unified-planning is one of

the core objectives of the
proposal

2021/2022

04A||=|_AN

1/2020

Unified-planning received some AlPlan4EU project ends, the
contributions from the unified-planning is entrusted to
open-call funding an open-source dev group
- Contingent Planning By the end of the year, we also
- Scheduling support expect the contributions from 7
- LTL/LTLf planner more open-calls running today.
- SIADEX HTN planner
- Social Laws
Today
2023 12/2023
Unified-planning development Unified-planning 1.0 released!

The AlPlan4EU consortium

The first official stable version

starts the development and lays has been released on

out the library foundations.

30/06/2023.

. AIPLAN
License Schema and Governance 4EU

Very last boring slide, I promise...

e The library itself is released under Apache License 2.0
o Very permissive, also for commercial, non-free usages

e Linked planners (and their interfacing code) retain their own licenses
o The unified-planning library by default prints credits and licensing information every time an
engine is used
o The use of a specific planner might be restricted for certain applications

e So far, the project has been governed by the AlPlan4EU consortium
o We are now writing a set of governance rule to entrust the unified-planning to an open-source
do-ocracy
o Maintenance ensured by many partners
o Open to new contributions / pull-requests / maintainers
o We welcome feedback on the governance: https:/github.com/aiplan4eu/unified-planning/pull/422

https://github.com/aiplan4eu/unified-planning/pull/422

Basic Example: blocksworld @ F-AN

e Objectives:
o Show a minimal example that everyone knows
o Show the Oneshot planning interface
o Solve with different planners

e Notebook: 01 - Introduction Blocksworld Planning

»

O = m| O

https://colab.research.google.com/drive/1jQQYcoROIDrld9iHyy95A7DtV8NBBaZe

Architecture

Global Vision

USE CASES

Logistics Automation
Agriculture

Flexible Manufacturing
Fleet Planning

Human Robot Interaction
Subsea Robotics

Lab Planning

Your Use Case

_‘E(_HNOLOGY - SPECIFIC BRyp G

PLANNING ENGINES

Planning
Engine 2

§ e

Planning
Engine 3

UNIFIED PLANNING FRAMEWO

04A||=>|_AN

Library Scope

e Prototype planning applications
o Construct planning problems from data
o Easily try multiple planners on the same
problem
o Explore multiple formulations

e Algorithms using planning as oracle
o “Meta-planners” (more on this later)

e (Combine multiple planners in a single

solution
o Ground with enginel and solve with engine2

e Procedural modeling and solving (alpha)
o Simulated effects
o Custom heuristics

. AIPLAN
Problem Formulations AEU

e 5 “lasses” supported (for now) LContingentProblemi ‘HierarchicalProbIem'

e APIs“as shared as possible”

o Actions, expressions, fluents...)MultiAgentProblem’ ‘SchedulingProblem‘
e UP infrastructure works on \/
AbstractProblem for full ’AbstractProbIem'

generality

Available
Operation Modes

OneshotPlanner
PlanValidator
SequentialSimulator
Compiler
AnytimePlanner
Replanner
PlanRepairer
PortfolioSelector

Q@ AIPLAN
4EU

ProblemKind AT

e Similarto PDDL : requirements print (problem.kind)
: PROBLEM_CLASS: [ACTION_BASED]
e Automatically calculated from a problem PROBLEM_TYPE: ['SIMPLE_NUMERIC_PLANNING]

speciﬁ cation NUMBERS: [[BOUNDED_TYPES’,'DISCRETE_NUMBERS']
CONDITIONS_KIND: ['NEGATIVE_CONDITIONS’,'EQUALITIES']
TYPING: [FLAT_TYPING]]

FLUENTS_TYPE: '[NUMERIC_FLUENTS, 'OBJECT_FLUENTS']
SIMULATED_ENTITIES: ['SIMULATED_EFFECTS']

o Syntactic checks (some corner cases are
over-approximated)

e Planning engines declare the
ProblemKind they support

e Used by the UP to filter applicable
engines when invoking OMs without
specifying the engine name

Interoperability and Interfaces 4e0 N

from unified planning.io import PDDLReader

e Software converters
o tarski (https://github.com/aig-upf/tarski) reader = PDDLReader ()

domain filename = ...

o protobuf (more on this later) problem filename = ...
Reader used to parse PDDL files and return a
e Formal language input/output up.model . problem
problem = reader.parse problem
O PDDL domain filename,

problem filename

m PDDL 2.1 level 3 for classical)
numeric and temporal planning

. . problem = ... # A new problem
[| HDDL for hierarchical writer = PDDLWriter (problem)
i # Path to file where the PDDL domain will be printed.
m MA-PDDL for multi-agent domain filename - ...
0O (fragments Of) ANML writer.write domain (domain filename)

Path to file where the PDDL problem will be printed.
problem filename = ...
writer.write problem(problem filename)

https://github.com/aig-upf/tarski

How to Model and
Solve Problems

Modelling and Solving Problems QAPLAN

e classical and numeric problems

Notebook: 03 - Modelling

e hierarchical problems

Notebook: 04 - Hierarchical Planning

https://colab.research.google.com/drive/16ec-ZGDvYswerQVRH_0CApTf39YiybIF
https://colab.research.google.com/drive/1W8tnWq0ImpUsddMTY-mAbGNf4MFS2vjA

Temporal Planning Example

e Show how to mix PDDL parser and
code (MatchCellar domain)

e Show some more OMs:
o OneshotPlanner, Compiler and
PlanValidator

e Glimpse of advanced features
o custom heuristic

e Notebook: 02 -Temporal Planning

Action name

men

men

men

men

light_match(match0)

light_match(match1)

d_fuse

d_fus

d_fuse

d_fuse

(fuse3, match0)

e(fuse2, match0)

(fuse0, match1)

(fi

use1, match1)

AIPLAN
4EU

color
W mend_fuse
W light_match

@m 202 3.04 4.02 5.0 6.03 8.04

https://colab.research.google.com/drive/1PMxPODaNJqGEiycQPAJtluhTzHJ_DVqx

Advanced
Features

Simulated Effects °4A'P"AN

Simulated Effects allow to compute the effects of an action on a list of fluents via a
call to a provided Python function

Location, Robot = UserType('Location'), UserType ('Robot')
battery charge = Fluent ('battery charge', IntType(0, 100), robot=Robot)

|Dict: action’s parameters/values

def battery fun (problem, state, actual params) :

value = state.get value (battery charge (actual params.get (robot))) .constant value ()
return [Int (value - 10)] |List of computed fluent values |
move = InstantaneousAction('move', robot=Robot, 1 from=Location, 1 to=Location)

move.add precondition (GE (battery charge (robot), 10))

move.add_effect (at (robot), 1_to) |List of fluents whose values are calculated |

move.set simulated effect (SimulatedEffect ([battery charge (robot)], battery fun))

Notebook: 07 - Simulated Effects

https://colab.research.google.com/drive/1Xom2n40ssdIWa3Mx1gqGpx4kQ5sdqw6n

. . AIPLAN
Custom Heuristics AEU

e Idea: specify a planning heuristic in Python and ask an engine to use it

o Heuristic is a function on a state and computes a heuristic value or None if it is a dead end
Notebook: last part of 02 -Temporal Planning

problem = self.problems|["basic"].problem

x = problem.fluent ("x")

def h(state):

v = state.get value (x()) .bool constant value ()

return 0 if v else 1

with OneshotPlanner (name="tamer") as planner:

final report = planner.solve(problem, heuristic=h)

https://colab.research.google.com/drive/1PMxPODaNJqGEiycQPAJtluhTzHJ_DVqx

. AIPLAN
Meta-Engines 4EU

e Idea: solve a problem by calling to another (or the same) OperationMode

e Examples:

o Oversubscription planning
m by repeated solving os subsets of goals
m Natively implemented in the library oversubscription[engineX]
m Notebook: 08 - Oversubscription using MetaEngines

o Contingent planning
m By calling classical planning on different observations
m CPORPlanning[engineX] (Credit: Shani Guy and Hila Kesem Hadad)

https://colab.research.google.com/drive/1KrzrRtEU2YMTjCPCn6xQR8udDZa2rIbO

Applications

iy

‘\vnn‘ A

Pipeline — |

7

Vehicle garage

TSBs 480

.‘Ec\'\NoLoGY - SPECIFIC BR'DGES

USE CASES

PLANNING ENGINES

”~

Logistics Automation

Agriculture

Flexible Manufacturing

Planni
Fleet Planning E:;i':: ?
Human Robot Interaction Plan_ning
Engine 2

Subsea Robotics

m

Planning
Engine 3

Lab Planning

ING FRAMEWORK

Your Use Case

04A||=>|_AN

Planning in Applications

Failure
Planning Execution Monitoring response and Replanning
recovery
(Semi-)Automatic Transform high-level Continuously supervise Identify when a When goals or
synthesis of operations plans into executable the plan execution and monitored situation is conditions change, we
to achieve a certain instructions for provide problematic and raise need to adapt the

gbjective/goal, keeping machines. Interface state-estimations. alarms to planning currently in
into accc::lr.]:. resouc:ces with management users/subsystems. execution to cope with

Cazit;r;:;;n systems (e.g. WMSs). Automatically recover the new contingencies.

from problematic

situations.

&

. ==l R e

For remote operation For process automation For autonomous robotics [

Agriculture Example: Maize Harvesting®4£0 "

Agriculture campaign planning: silage maize harvesting

e (oordinate machines in their joint farming process
e Harvesting multiple fields, transport to the silo, compaction in the silo
e Efficient use of resources (machinery, silo, staff, time) is crucial

Harvesting Process Overview

General goal: Harvest all fields with the available
resources (machines, silos) in a way that minimizes the
overall campaign duration:

(@)

(@)
(@)
@)

Selection of ordering in which fields are harvesting
Assignment of harvesters to fields

Assignment of TVs to HVs

Assignment of silos for yield unload

Goals (UP):

(@)

O O O O

All fields are fully harvested

All HVs are ‘free’

AlL TVs are empty and ‘free’

All silo unloading locations are cleared
Optimization goal: minimize overall_duration

AIPLAN
4EU

Maize Harvesting Planning Problem 4EU

Goal: Minimize duration (leading to cost reduction)
Requirements / UP Features

Temporal planning
Scheduling resources
Optimization
Simulated effects
Heuristics

c transport vehicle
1

Start Route time scale End

Harvesting Process: Plan Snapshot =Tk

le6
tv_726 -
5.8022 A . :
20000
5.8020 1 tv_825
) 20 40 60 80 100
TV bunker filling level (%)
15000 -
5.8018 A
loc_field_5
loc_field_4 e
5.8016 A [xs0]
loc_field_3
10000 -
loc_field_2
5.8014 A

loc_field_1

5.8012)

loc_field_0 5000
20 40 60 80
Field harvested area (%)
5.8010 A ’
loc_silo_0
) 100 200 300 400 500 600 700 800 o
Yield-mass unloaded at silo (t) Time[s]

451600 451800 452000 452200

04A||=>|_AN

Robotics

emaniuiation Ubraries Window tep
iigves

T4 [anning

otarentet

o0 Lt Wed

o0 5 womm

Integrations with Robot Technologies Fraa

e Embedded Systems Bridge
e Robot Operating System (ROS/ROS2) wrappers: UP4ROS / UP4R0S2
e UP support in PlanSys2

AIPLAN

Embedded Systems Bridge (ESB) 4EU

e Abridge from UP to Embedded Systems

o Instead of wrapping UP, ESB aims to provide additional functionalities for robotic systems
o Python library for using UP
o Robot framework and middleware independent

e Simplifies creating planning problems for existing robot actions and fluent
representations
e Plan execution and monitoring capabilities

https://github.com/aiplan4eu/embedded-systems-bridge

https://github.com/aiplan4eu/embedded-systems-bridge

Robot Examples 04AE"L=J"'A'\'

Service Robot: Mobipick Drones

AIPLAN

Mobipick 4EU

The multimeter shall be

placed into the box

The box shall b
placed onto the
target table

i Q5-AN
Connecting UP to Robots

Connecting UP to Robots deo-AN

Bridge
Definition «

| L —

Extension of python
Robot State, Joint api to UP Domain
State, Env. State (Fluents, Actions,
Objects)

Unified Planning

Mobipick Application T d8

Mapping between Robot and UP Representation

We already have Python implementations for Mobipick’s actions and
computation of fluents

|dea: Let’s create UP definitions directly from those functions

def robot at fun(l: Location):

uttCheck if the Tobot is at a location:"""
return Robot.location ==

bridge = Bridge()
bridge.create types([Location, Area, Robot])
robot_at = bridge.create fluent from function(robot at fun)

e ESB maintains mapping in both directions
o e.g.,call functions to get state

problem = bridge.define problem()
bridge.set initial values(problem)

Mapping between Robot and UP Representation

... same for actions

class Robot:

@classmethod

def move(cls, 1 from: Location, 1 to: Location):
print(f"Moving from {1 from} to {1l to}")
Robot.location = 1 to
return True

move, [l from, 1 to] = bridge.create action(

"move", _callable=Robot.move,

1 from=Location, 1 to=Location, duration=1
)
move.add condition(StartTiming(), robot at(l from))
move.add condition(StartTiming(), Not(robot at(l to)))
move.add effect(StartTiming(), robot_at(l from), False)
move.add effect(EndTiming(), robot at(l to), True)

Executing the Plan 4e0- N

e ESB executes plans as dependency
graphs

e [Easy dispatching of actions via
mapping

Bridge
I . Definition
plan = bridge.solve(problem, planner_name="aries") e Ension o pythos
dependency graph = bridge.get executable graph(plan) State, Env. State (Fluents, Actions, s

dispatcher = PlanDispatcher()
dispatcher.execute plan(plan, dependency graph)

L
| Symbolic Facts
' Generator

é{_ e . -; i """"" Unified Planning

Mobipick Application

AIPLAN
Drones Example QAP

e Multiple Drones surveying an area

e Goal: Find plates in environment
and inspect them

e Uses hierarchical planning (Aries)

https://github.com/franklinselva/genom3-experiment

https://github.com/franklinselva/genom3-experiment

Drones: Plan and Dependency Graph

UP output: time-triggered plan
start # action # duration

0.0 survey(rl, area, station1), 100.0
100.1 send_info(r2), 1.0
101.1 acquire_plates_order, 1.0
102.1 move(r2, station2, 12), 20.0
102.1 move(rl, stationl, (4), 20.0
122.2 inspect_plate(rl, 4), 2.0
122.2 inspect_plate(r2, 12), 2.0
124.3 move(r2,12,13),20.0
124.4 move(rl, |4, charging_dock1), 20.0
144.4 inspect_plate(r2, 13), 2.0
146.5 move(r2,13,11),20.0
166.6 inspect_plate(r2, 11), 2.0
168.7 move(r2, L1, charging_dock2), 20.0

bridge.get_executable_graph(plan)

I

AIPLAN

start=100.1, dur=1.0

4EU
T
survey(r1, areat, station1)
snrho.o,ldurﬂoo.o Dependency
send_info(r2) grap h

l

acquire_plates_order
start=101.1, dur=1.0

—

move(r2, station2, 12)
start=102.1, dur=20.0

l

inspect_plate(r2, 12)
start=122.1, dur=2.0

move(r2, 12, I13)
start=124.3, dur=20.0

B

move(r1, stationt, 14)
start=102.1, dur=20.0

l

inspect_plate(r1, 14)
start=122.1, dur=2.0

move(r1, 14,
charging_dock1)
start=124.4, dur=20.0

L

inspect_plate(r2, I3)
start=144.4, dur=2.0

]

l

move(r2, I3, 1)
start=146.5, dur=20.0

|

inspect_plate(r2, 1)
start=166.7, dur=2.0

move(r2, 1,
charging_dock2)
start=168.7, dur=20.0

Q@ AIPLAN

UP4ROS & UP4ROS2 4ED

e ROS and ROS2 wrappers for UP
e Provide single ROS node that expose the UP APl via ROS messages

e ROS Services allow to define and manage planning problems interactively,
o e.g.,AddAction.srv, AddFluent.srv, AddGoal.srv, AddObject.srv, GetProblem.srv

e ROS Actions for plan generation,
o e.g.,PlanOneShotAction, PDDLPlanOneShotAction

e (onverters for UP Python objects to and from ROS messages

Credits: Daniele Calisi and Guglielmo Gemignani

https://github.com/aiplan4eu/UP4ROS https://github.com/aiplan4eu/UP4R0OS2

https://github.com/aiplan4eu/UP4ROS
https://github.com/aiplan4eu/UP4ROS2

AIPLAN

UP4ROS Example Messages 4EU

AddAction.srv # Action.msg

string problem_name # Action name. e.g. "move"

up_msgs/Action action string name

bool success # Typed and named parameters of the action.

i up msgs/Parameter arameters
string message p_msgs/ [l p

If set, the action is durative. Otherwise it is instantaneous.

up msgs/Duration[] duration

Conjunction of conditions

up msgs/Condition[] conditions

Conjunction of effects as a result of applying this action.

up msgs/Effect[] effects

AIPLAN

UP4R0OS Example Client 4EU

rospy.init node("test up4ros client")

client = actionlib.SimpleActionClient (action name, msgs.PlanOneShotAction)

pb writer = ROSInterfaceWriter()
goal msg = msgs.PlanOneShotGoal ()
goal msg.plan request.problem = pb writer.convert (

get example problems () ["robot"].problem # UP problem

client.send goal (goal msq)
client.wait for result()

result = client.get result ()

Conclusions

. AIPLAN
Conclusions 4EU

e You can find many more interactive demos in the UP

documentation
o https://unified-planning.readthedocs.io

e We hope the UP library can be useful to some of you!

e (Contributions are always welcome

o New engines
o New problems/feature operation modes

e #ad: FBK is always looking for talents!
o PhD Students, Developers, Research Assistants, Internships

o See jobs.fbk.eu
o Contact me (amicheli@fbk.eu) for info!

https://unified-planning.readthedocs.io
https://jobs.fbk.eu/
mailto:amicheli@fbk.eu

