
The AIPlan4EU project is funded by the European Commission - H2020
research and innovation programme under grant agreement No 101016442

Automated Planning in
Practice:
The Unified Planning Library

Andrea Micheli
Most of the material was prepared in collaboration with Gabriele Roger,
Arthur Bit-Monnot and Sebastian Stock and presented at ICAPS 2023

<insitutional-slides>

About me

My name is Andrea Micheli.

● PhD in Computer Science from the University of Trento and
Fondazione Bruno Kessler (2016)

○ Visiting scientist at NASA Ames Research Center (Mountain View, California)

● Head of the Planning Scheduling and Optimization Unit at
Fondazione Bruno Kessler (Trento, Italy)

○ 9 members and growing!

● Coordinator of the AIPlan4EU project

● European Research Council (ERC) Principal Investigator

Fondazione Bruno Kessler
About us

• 11 research Centers
• 410 researchers
• 2 specialized libraries
• 7 laboratories

Fondazione Bruno Kessler (FBK) is a research
not-for-profit public interest entity result of a history that
is more than half a century old.

FBK aims to excellence in science and technology with
particular emphasis on interdisciplinary approaches and to
the applicative dimension.

MISSION

PROFILE

page
05

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.

FBK
Research Centers

CENTER FOR
CYBERSECURITY

CENTER FOR
DIGITAL SOCIETY

CENTER FOR DIGITAL
INDUSTRY

CENTER FOR DIGITAL
HEALTH & WELLBEING

CENTER FOR HEALTH
EMERGENCIES

CENTER FOR SUSTAINABLE
ENERGY

CENTER FOR
SENSORS & DEVICES

EUROPEAN CENTER FOR THEORETICAL
STUDIES IN NUCLEAR PHYSICS AND
RELATED AREAS

ITALIAN-GERMAN
HISTORICAL INSTITUTE

INSTITUTE FOR THE EVALUATION
OF PUBLIC POLICIES

CENTER FOR
RELIGIOUS STUDIES

Digital Industry
At a glance

3D Optical Metrology

Technologies of Vision

Software Engineering

Machine Translation

Formal Methods

Open IoT

Budget
✔ Costs: 6.1 M€
✔ Revenues 4.3 M€
✔ Self-funding: 70%

People
✔ 121 (staff, postdocs, RA, PhD)
✔ 31 staff, 31 postdocs
✔ 24 research assistants
✔ 34 phd students

Scientific Staff
✔ 8 Associate Professors
✔ 6 Full ProfessorsData Science for Industry and

Physics

Planning Scheduling and
Optimization

</insitutional-slides>

Seminar Agenda

1. Introduction: genesis of the Unified Planning library and scope

2. Architecture and design principles: Operation modes and API structure

3. How to model and solve problems

4. Advanced features (if time permits)

5. Applications and conclusions

Let’s make this
seminar interactive!

● Ask questions anytime!

● I will run the code live

● Try the notebooks on your laptop!
○ Feel free to edit the code!

How to Participate

● Tutorial resources available at: https://tinyurl.com/demoup

● You can either run the examples of Google colab (Google account required, no
installation needed) or on your local machine

● Basic installation
○ apt install graphviz graphviz-dev (for plotting)
○ apt install openjdk-17-jre (only needed if you want to use ENHSP)
○ python3 -m pip install unified-planning[engines,plot]

https://tinyurl.com/demoup

Introduction

Planning, Scheduling and Optimization
Given a model of a system and a goal to be reached under constraints,
find a course of actions/schedule to drive the system to the goal.

System Specification

Initial Configuration and
Objectives

Planner / Scheduler / Optimizer

(Optimal)
Plan/Schedule

General system architecture

(Re)Planning /
(Re)Scheduling

Execution

Monitoring

FDIR

System

Goals

Plan

Ac
tu

at
io

ns

O
bservations

Replan

Al
ar

m
s

Not only plan
generation/deliberation!

Support the components of
a general autonomy
architecture based on
planning

What the Heck is “unified-planning”?

“Permissively open-source

python library

for the modeling,

manipulation

and solving

of several kinds of planning problems”

from unified_planning.shortcuts import *

x = Fluent("x")

a = InstantaneousAction("a")
a.add_precondition(Not(x))
a.add_effect(x, True)

problem = Problem("basic")
problem.add_fluent(x)
problem.add_action(a)
problem.set_initial_value(x, False)
problem.add_goal(x)

with OneshotPlanner(problem_kind=problem.kind) as planner:
 result = planner.solve(problem)
 if result.plan:
 print(f"{planner.name} found a plan: {result.plan}")
 else:
 print("No plan found.")

https://github.com/aiplan4eu/unified-planning
https://unified-planning.readthedocs.io

https://github.com/aiplan4eu/unified-planning
https://unified-planning.readthedocs.io

Key Features
● Diverse planning problem classes supported

○ Action-based (Classical, Numeric, Temporal); (Temporal) Hierarchical Task Networks; Multi-agent;
Resource scheduling; Contingent planning

● Non only plan generation: Operation Modes
○ OneshotPlanner, PlanValidator, SequentialSimulator, Compiler, AnytimePlanner, Replanner,

PlanRepairer, PortfolioSelector

● Automatic “requirements”: ProblemKind

● Different types of plans supported
○ Sequential, Partial-order, Time-triggered, Simple Temporal Network, Hierarchical

● Interoperability with formal languages and other libs
○ PDDL, ANML, Tarski, GRPC

● Advanced features
○ Meta-engines, simulated effects, custom heuristics

Genesis and History of the Library

1/2020

The AIPlan4EU project starts

The unified-planning is one of
the core objectives of the
proposal

Unified-planning development

The AIPlan4EU consortium
starts the development and lays
out the library foundations.

2021/2022

2023

Unified-planning received some
contributions from the
open-call funding

- Contingent Planning
- Scheduling support
- LTL/LTLf planner
- SIADEX HTN planner
- Social Laws

Today

Unified-planning 1.0 released!

The first official stable version
has been released on
30/06/2023.

12/2023

AIPlan4EU project ends, the
unified-planning is entrusted to
an open-source dev group

By the end of the year, we also
expect the contributions from 7
more open-calls running today.

License Schema and Governance
Very last boring slide, I promise…

● The library itself is released under Apache License 2.0
○ Very permissive, also for commercial, non-free usages

● Linked planners (and their interfacing code) retain their own licenses
○ The unified-planning library by default prints credits and licensing information every time an

engine is used
○ The use of a specific planner might be restricted for certain applications

● So far, the project has been governed by the AIPlan4EU consortium
○ We are now writing a set of governance rule to entrust the unified-planning to an open-source

do-ocracy
○ Maintenance ensured by many partners
○ Open to new contributions / pull-requests / maintainers
○ We welcome feedback on the governance: https://github.com/aiplan4eu/unified-planning/pull/422

https://github.com/aiplan4eu/unified-planning/pull/422

● Objectives:
○ Show a minimal example that everyone knows
○ Show the Oneshot planning interface
○ Solve with different planners

● Notebook: 01 - Introduction Blocksworld Planning

Basic Example: blocksworld

E MOD

E

M

O

D

https://colab.research.google.com/drive/1jQQYcoROIDrld9iHyy95A7DtV8NBBaZe

Architecture

Global Vision A reusable, planner-agnostic Python library,
offering an abstraction layer for diverse
planning engines and interoperability with
existing tools and languages

“Planning Engines” is a general word:
plan generators, plan validators,
visualizations…

The UPF has a notion of “Operation Mode” (OM):
● OM examples include “OneshotPlanning”,

“PlanValidation” and “PlanRepair”
● Each engine declares which operation

modes it supports

The API offered by the UPF is integrated by a
collection of reusable components that are specific
to a certain technology (not use-case specific).
E.g. Integration in ROS, Integration in a WMS, …

Library Scope

● Prototype planning applications
○ Construct planning problems from data
○ Easily try multiple planners on the same

problem
○ Explore multiple formulations

● Algorithms using planning as oracle
○ “Meta-planners” (more on this later)

● Combine multiple planners in a single
solution

○ Ground with engine1 and solve with engine2

● Procedural modeling and solving (alpha)
○ Simulated effects
○ Custom heuristics

Problem Formulations

● 5 “classes” supported (for now)

● APIs “as shared as possible”
○ Actions, expressions, fluents…

● UP infrastructure works on
AbstractProblem for full
generality

Available
Operation Modes

● OneshotPlanner
● PlanValidator
● SequentialSimulator
● Compiler
● AnytimePlanner
● Replanner
● PlanRepairer
● PortfolioSelector

ProblemKind

● Similar to PDDL :requirements

● Automatically calculated from a problem
specification

○ Syntactic checks (some corner cases are
over-approximated)

● Planning engines declare the
ProblemKind they support

● Used by the UP to filter applicable
engines when invoking OMs without
specifying the engine name

print(problem.kind)

PROBLEM_CLASS: ['ACTION_BASED']
PROBLEM_TYPE: ['SIMPLE_NUMERIC_PLANNING']
NUMBERS: ['BOUNDED_TYPES', 'DISCRETE_NUMBERS']
CONDITIONS_KIND: ['NEGATIVE_CONDITIONS', 'EQUALITIES']
TYPING: ['FLAT_TYPING']
FLUENTS_TYPE: ['NUMERIC_FLUENTS', 'OBJECT_FLUENTS']
SIMULATED_ENTITIES: ['SIMULATED_EFFECTS']

Interoperability and Interfaces

● Software converters
○ tarski (https://github.com/aig-upf/tarski)
○ protobuf (more on this later)

● Formal language input/output
○ PDDL

■ PDDL 2.1 level 3 for classical
numeric and temporal planning

■ HDDL for hierarchical
■ MA-PDDL for multi-agent

○ (fragments of) ANML

from unified_planning.io import PDDLReader

reader = PDDLReader()
domain_filename = ...
problem_filename = ...

Reader used to parse PDDL files and return a
up.model.Problem
problem = reader.parse_problem(
 domain_filename,
 problem_filename
)

problem = ... # A new problem
writer = PDDLWriter(problem)
Path to file where the PDDL domain will be printed.
domain_filename = ...
writer.write_domain(domain_filename)
Path to file where the PDDL problem will be printed.
problem_filename = ...
writer.write_problem(problem_filename)

https://github.com/aig-upf/tarski

How to Model and
Solve Problems

Modelling and Solving Problems

● classical and numeric problems

Notebook: 03 - Modelling

● hierarchical problems

Notebook: 04 - Hierarchical Planning

https://colab.research.google.com/drive/16ec-ZGDvYswerQVRH_0CApTf39YiybIF
https://colab.research.google.com/drive/1W8tnWq0ImpUsddMTY-mAbGNf4MFS2vjA

● Show how to mix PDDL parser and
code (MatchCellar domain)

● Show some more OMs:
○ OneshotPlanner, Compiler and

PlanValidator

● Glimpse of advanced features
○ custom heuristic

● Notebook: 02 -Temporal Planning

Temporal Planning Example

https://colab.research.google.com/drive/1PMxPODaNJqGEiycQPAJtluhTzHJ_DVqx

Advanced
Features

Simulated Effects

Simulated Effects allow to compute the effects of an action on a list of fluents via a
call to a provided Python function

Location, Robot = UserType('Location'), UserType('Robot')

battery_charge = Fluent('battery_charge', IntType(0, 100), robot=Robot)

def battery_fun(problem, state, actual_params):

 value = state.get_value(battery_charge(actual_params.get(robot))).constant_value()

 return [Int(value - 10)]

move = InstantaneousAction('move', robot=Robot, l_from=Location, l_to=Location)

...

move.add_precondition(GE(battery_charge(robot), 10))

move.add_effect(at(robot), l_to)

move.set_simulated_effect(SimulatedEffect([battery_charge(robot)], battery_fun))

Dict: action’s parameters/values

List of computed fluent values

List of fluents whose values are calculated

Notebook: 07 - Simulated Effects

https://colab.research.google.com/drive/1Xom2n40ssdIWa3Mx1gqGpx4kQ5sdqw6n

Custom Heuristics

● Idea: specify a planning heuristic in Python and ask an engine to use it
○ Heuristic is a function on a state and computes a heuristic value or None if it is a dead end

Notebook: last part of 02 -Temporal Planning

problem = self.problems["basic"].problem

x = problem.fluent("x")

def h(state):

v = state.get_value(x()).bool_constant_value()

return 0 if v else 1

with OneshotPlanner(name="tamer") as planner:

final_report = planner.solve(problem, heuristic=h)

https://colab.research.google.com/drive/1PMxPODaNJqGEiycQPAJtluhTzHJ_DVqx

Meta-Engines

● Idea: solve a problem by calling to another (or the same) OperationMode

● Examples:
○ Oversubscription planning

■ by repeated solving os subsets of goals
■ Natively implemented in the library oversubscription[engineX]
■ Notebook: 08 - Oversubscription using MetaEngines

○ Contingent planning
■ By calling classical planning on different observations
■ CPORPlanning[engineX] (Credit: Shani Guy and Hila Kesem Hadad)

https://colab.research.google.com/drive/1KrzrRtEU2YMTjCPCn6xQR8udDZa2rIbO

Applications

Applications

TSBs

u

Planning in Applications
Planning

(Semi-)Automatic
synthesis of operations

to achieve a certain
objective/goal, keeping
into account resources

capabilities and
optimality.

Execution

Transform high-level
plans into executable

instructions for
machines. Interface
with management

systems (e.g. WMSs).

Monitoring

Continuously supervise
the plan execution and

provide
state-estimations.

Replanning

When goals or
conditions change, we

need to adapt the
planning currently in

execution to cope with
the new contingencies.

Failure
response and

recovery

Identify when a
monitored situation is
problematic and raise

alarms to
users/subsystems.

Automatically recover
from problematic

situations.

For remote operation For process automation For autonomous robotics

Agriculture Example: Maize Harvesting

Agriculture campaign planning: silage maize harvesting

● Coordinate machines in their joint farming process
● Harvesting multiple fields, transport to the silo, compaction in the silo
● Efficient use of resources (machinery, silo, staff, time) is crucial

Harvesting Process Overview

General goal: Harvest all fields with the available
resources (machines, silos) in a way that minimizes the
overall campaign duration:

○ Selection of ordering in which fields are harvesting
○ Assignment of harvesters to fields
○ Assignment of TVs to HVs
○ Assignment of silos for yield unload

Goals (UP):
○ All fields are fully harvested
○ All HVs are ‘free’
○ All TVs are empty and ‘free’
○ All silo unloading locations are cleared
○ Optimization goal: minimize overall_duration

Maize Harvesting Planning Problem

Goal: Minimize duration (leading to cost reduction)

Requirements / UP Features

● Temporal planning
● Scheduling resources
● Optimization
● Simulated effects
● Heuristics

harvester

transport vehicle
1

Infield planner
Arolib

Harvesting Process: Plan Snapshot

Robotics

Integrations with Robot Technologies

● Embedded Systems Bridge
● Robot Operating System (ROS/ROS2) wrappers: UP4ROS / UP4ROS2
● UP support in PlanSys2

Embedded Systems Bridge (ESB)

● A bridge from UP to Embedded Systems
○ Instead of wrapping UP, ESB aims to provide additional functionalities for robotic systems
○ Python library for using UP
○ Robot framework and middleware independent

● Simplifies creating planning problems for existing robot actions and fluent
representations

● Plan execution and monitoring capabilities

https://github.com/aiplan4eu/embedded-systems-bridge

https://github.com/aiplan4eu/embedded-systems-bridge

Robot Examples

Service Robot: Mobipick Drones

Mobipick

The box shall be
placed onto the
target table

The multimeter shall be
placed into the box

Connecting UP to Robots

Connecting UP to Robots

Mapping between Robot and UP Representation

● We already have Python implementations for Mobipick’s actions and
computation of fluents

● Idea: Let’s create UP definitions directly from those functions

● ESB maintains mapping in both directions
○ e.g., call functions to get state

Mapping between Robot and UP Representation

… same for actions

● ESB executes plans as dependency
graphs

● Easy dispatching of actions via
mapping

Executing the Plan

Drones Example

● Multiple Drones surveying an area
● Goal: Find plates in environment

and inspect them
● Uses hierarchical planning (Aries)

https://github.com/franklinselva/genom3-experiment

https://github.com/franklinselva/genom3-experiment

Drones: Plan and Dependency Graph

UP output: time-triggered plan

 # start # action # duration

 0.0 survey(r1, area, station1), 100.0
100.1 send_info(r2), 1.0
101.1 acquire_plates_order, 1.0
102.1 move(r2, station2, l2), 20.0
102.1 move(r1, station1, l4), 20.0
122.2 inspect_plate(r1, l4), 2.0
122.2 inspect_plate(r2, l2), 2.0
124.3 move(r2, l2, l3), 20.0
124.4 move(r1, l4, charging_dock1), 20.0
144.4 inspect_plate(r2, l3), 2.0
146.5 move(r2, l3, l1), 20.0
166.6 inspect_plate(r2, l1), 2.0
168.7 move(r2, l1, charging_dock2), 20.0

Dependency
graphbridge.get_executable_graph(plan)

UP4ROS & UP4ROS2

● ROS and ROS2 wrappers for UP
● Provide single ROS node that expose the UP API via ROS messages
● ROS Services allow to define and manage planning problems interactively,

○ e.g., AddAction.srv, AddFluent.srv, AddGoal.srv, AddObject.srv, GetProblem.srv

● ROS Actions for plan generation,
○ e.g., PlanOneShotAction, PDDLPlanOneShotAction

● Converters for UP Python objects to and from ROS messages

Credits: Daniele Calisi and Guglielmo Gemignani

https://github.com/aiplan4eu/UP4ROS https://github.com/aiplan4eu/UP4ROS2

https://github.com/aiplan4eu/UP4ROS
https://github.com/aiplan4eu/UP4ROS2

UP4ROS Example Messages

AddAction.srv

string problem_name

up_msgs/Action action

bool success

string message

 # Action.msg

Action name. e.g. "move"

string name

Typed and named parameters of the action.

up_msgs/Parameter[] parameters

If set, the action is durative. Otherwise it is instantaneous.

up_msgs/Duration[] duration

Conjunction of conditions

up_msgs/Condition[] conditions

Conjunction of effects as a result of applying this action.

up_msgs/Effect[] effects

UP4ROS Example Client

rospy.init_node("test_up4ros_client")

client = actionlib.SimpleActionClient(action_name, msgs.PlanOneShotAction)

pb_writer = ROSInterfaceWriter()

goal_msg = msgs.PlanOneShotGoal()

goal_msg.plan_request.problem = pb_writer.convert(

 get_example_problems()["robot"].problem # UP problem

)

client.send_goal(goal_msg)

client.wait_for_result()

result = client.get_result()

Conclusions

Conclusions

● You can find many more interactive demos in the UP
documentation

○ https://unified-planning.readthedocs.io

● We hope the UP library can be useful to some of you!

● Contributions are always welcome
○ New engines
○ New problems/feature operation modes

● #ad: FBK is always looking for talents!
○ PhD Students, Developers, Research Assistants, Internships
○ See jobs.fbk.eu
○ Contact me (amicheli@fbk.eu) for info!

https://unified-planning.readthedocs.io
https://jobs.fbk.eu/
mailto:amicheli@fbk.eu

