
Improving Plan Quality through Heuristics for Guiding
and Pruning the Search: A Study Using LAMA

Francesco Percassi,∗ Alfonso Emilio Gerevini,∗ Hector Geffner†

∗Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy
{f.percassi,alfonso.gerevini}@unibs.it

† Departament de Tecnologies de la Informacio i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
hector.geffner@upf.edu

Abstract

Admissible heuristics are essential for optimal planning in
the context of search algorithms like A*, and they can also
be used in the context of suboptimal planning in order to
find quality-bounded solutions. In satisfacing planning, on
the other hand, admissible heuristics are not exploited by the
best-first search algorithms of existing planners even when
a time window is available for improving the first solution
found. For example, in the well-know planner LAMA, better
solutions within such a time window are sought by restart-
ing a Weighted-A* search guided by inadmissible heuristics,
each time a better solution is found. In this paper, we investi-
gate the use of admissible heuristics in the context of LAMA
for pruning nodes that cannot lead to better solutions. The re-
vised search of LAMA is experimentally evaluated using two
alternative admissible heuristics for pruning and three types
of problems: planning with soft goals, planning with action
costs, and planning with both action costs and soft goals. Soft
goals are compiled into hard goals following the approach of
Keyder and Geffner. The empirical results show that the use
of admissible heuristics in LAMA can be of great help to im-
prove the planner performance.

Introduction

While both satisficing and optimal planners rely on heuris-
tics for guiding or pruning the search, the nature of these
heuristics are different. Optimal planners rely on heuris-
tics that are admissible, ensuring that the solutions found
are provably best. Satisficing planners, on the other hand,
rely on non-admissible heuristics, that while not ensuring
optimality, provide better guidance for reaching the goal fast
(Geffner and Bonet 2013; Ghallab, Nau, and Traverso 2016).
In the well-known planner LAMA, for example, increasing
quality solutions are sought within a time window by restart-
ing a Weighted-A* (WA*) search guided by two inadmissi-
ble heuristics, with reduced weights, each time a better so-
lution is found (Richter and Westphal 2010).

In this paper, we aim to show that the search strategy used
in LAMA can significantly benefit from the use of a second,
admissible heuristic for pruning nodes that cannot lead to
better solutions. This is indeed a common idea in general
best-first search branch and bound algorithms (Applegate

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2011) but less common in planning where admissi-
ble heuristics tend to be either expensive or uninformed. We
show nonetheless that these heuristics can be cost-effective.

The revised search of LAMA is experimentally evaluated
using two alternative admissible heuristics for pruning and
three types of problems: planning with soft goals, planning
with action costs, and planning with both action costs and
soft-goals. Each of these types is of high interest in the plan-
ning community, and it was addressed in planning competi-
tions. The empirical results show that the use of admissible
heuristics in LAMA can play a crucial role in the anytime
setting of this planner to improve its performance. More-
over, the use of admissible heuristics in LAMA makes the
compilation approach to planning with soft goals (Keyder
and Geffner 2009) competitive with the state-of-the-art plan-
ners that natively support them.

The focus of our work is studying the use of admissible
heuristics for pruning in the context of satisficing and any-
time planning with LAMA. The work that is mostly related
to ours is AEES (Thayer, Benton, and Helmert 2012), a vari-
ant of EES (Thayer and Ruml 2011) adopting the “bounded
suboptimal search” framework. AEES is a general any-
time best-first search algorithm, not specifically targeted to
planning. Both our versions of LAMA and AEES exploit
admissible heuristics, but there are also significant differ-
ences: standard LAMA performs search restarting, while
AEES continues the same search after finding a solution;
the techniques for selecting the nodes from the open lists are
different and use different weight parameters; the combina-
tion of the used heuristics is different. Moreover, our exper-
imental analysis with LAMA is much more developed than
the evaluation of AEES for domain-independent planning in
(Thayer, Benton, and Helmert 2012). Finally, LAMA ex-
ploits some additional techniques that are specific for plan-
ning while AEES is a general search algorithm.

Search Pruning in Planning with LAMA

In this section, after the necessary background on compiling
soft goals and planning with LAMA, we introduce our vari-
ants of LAMA exploiting admissible heuristics for pruning
search nodes.

The problems involving soft goals are precompiled into
problems with action costs and no soft goals (Keyder and
Geffner 2009). The net benefit of a plan π is the difference

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

144



between the utility u(π) of the plan and its cost c(π). The
utility is the sum of the given utilities u(p) associated with
the soft goals p such that p holds in the state that results from
the plan. The cost of a plan π = a0, . . . , an is the sum of
the action costs c(ai). A problem P with soft goals is com-
piled into a problem P ′ with no soft goals by adding a new
atom p′ for each soft goal p that is made into a hard goal of
the problem P ′. Two new actions are introduced in P ′ for
achieving the hard goal p′: a collect(p) action with precon-
dition p, effect p′, and zero cost, and a forgo(p) action with
empty preconditions, effect p′, and cost u(p). Keyder and
Geffner show that the plans that maximize the net-benefit in
P correspond to the plans that minimize the sum of action
costs in the compiled problem P ′ with no soft goals. Sat-
isficing and optimal solutions to the net-benefit problem P
can then be obtained from satisficing and optimal solutions
to P ′. In the compilation additional atoms are used to force
the collect/forgo actions in the plan to appear at the end of
it, and to order them for removing redundant permutations.

Once problems with soft goals have been compiled, one
has to deal with the standard setting of satisficing planning
with action costs only. However, for testing we will distin-
guish between pure soft goal problems, soft goal problems
with actions costs, and problems with action costs only.

LAMA is a satisficing planner built on top of the more
general architecture of Fast Downward (Helmert 2006). In
LAMA, solutions are improved by restarting a WA* search
with the weight reduced, each time a better solution is found.
The WA* in LAMA reopens nodes when cheaper paths to
the state represented by a node are found. The first solution
is computed by a slightly different search algorithm, namely
GBFS, which is basically WA* with a very large weight for
the heuristic component. For problems with non-unit action
costs, a second solution is then computed, also by GBFS,
but using a cost-sensitive heuristic. In both cases, better so-
lutions are sought then using restarting WA*.

LAMA uses inadmissible heuristics during these
searches. In the first search, always a GBFS, LAMA uses
the FF-heuristic hFF (Hoffmann and Nebel 2001) in the
form described in (Keyder and Geffner 2008), using min
hmax supports under the assumption that action costs are
all 1. In the following searches, however, if the problem
involves non-unit action costs, LAMA uses a cost-sensitive
version of the FF-heuristic, obtained from the min hadd
supports and action costs set to the true action costs plus 1.
The value of the heuristic in both cases is given by the sum
of the action costs used in the computation of the supports,
over the actions that occur in the resulting relaxed plan.
In a sense, the heuristic used in the first search estimates
distance to the goal, while the heuristic in the successive
searches estimates a cost to the goal that combines distance
estimates, given by the +1 term, and cost estimates given by
the true action costs.

To test the idea of using pruning heuristics in LAMA’s
search strategy, we developed two variations of this planner:
• LAMAP(h), where “P” stands for pruning, that follows

exactly the same search strategy as LAMA, but pruning in
restarting WA* search nodes using the admissible heuris-
tic function h;

• LAMAB(h), where “B” stands for branch and bound, that
that mimics LAMA during the GBFS search (two GBFS
searches if there actions with non-unit costs), but then
WA* is run with no restarts, pruning nodes using the ad-
missible heuristic h.

The two admissible heuristics h that we use in
LAMAP(h) and LAMAB(h) are an admissible action land-
mark heuristic hR and the well-known LM-cut heuristic
hLM-Cut (Helmert and Domshlak 2009). The first heuristic is
developed ad-hoc for problems where soft goals have been
compiled away and it is defined as follows: hR(s) is the sum
over the costs of all forgo(pi) such that pi (the precondition
of collect(pi)) is unReachable from s in the delete-relaxed
problem. Note that hR(s) can be computed as a variant of
the original cost-sensitive FF-heuristic where the costs of all
non-forgo actions are set to 0.

While hR is a simple heuristic for problems with soft
goals, the heuristic is also related to hLM-Cut and action
landmarks (Karpas and Domshlak 2009). If we say that a
STRIPS action is a landmark action iff it belongs to all the
plans, then the heuristic hLA(s) defined as the size of a set
LA of landmark actions computed from the problem initial
state that have not been done in the way to s is an admissible
heuristic. The heuristic hR is equivalent to the cost-sensitive
landmark heuristic hLA(s) when LA is defined as the set
of forgo action landmarks in the delete-relaxed of the com-
piled problem. The LM-cut heuristic is also an admissible
action landmark heuristic, and it dominates hR as it consid-
ers disjunctions of action landmarks as well (Helmert and
Domshlak 2009).

As usual, a search state s is pruned in LAMAP(h) or
LAMAB(h) when the pruning condition g(s) + h(s) ≥ B
is true, where g(s) stands for the accumulated cost up to s
and B stands for the cost of the best plan found so far. Since
hLM-Cut is expensive to compute, the evaluation of the prun-
ing condition with hLM-Cut is done only if the condition is
true for the (inadmissible) hFF heuristic used by LAMA for
guiding the search. That is, if this pruning condition fails
for hFF, the state s is not pruned and hLM-Cut is not evalu-
ated. Thus a state is actually pruned when suggested by the
inadmissible heuristic and then confirmed by the admissi-
ble heuristic. Note that, since hLM-Cut ≤ hFF, the pruning is
both sound and complete; i.e., all and only nodes that can
be pruned according to the admissible heuristic hLM-Cut are
pruned. It follows that LAMAP(h) and LAMAB(h) are both
anytime optimal when the heuristic h is admissible. That is,
both will find an optimal solution if given sufficient time and
memory, and otherwise will just report a satisfying solution.

Experimental Results

We experimentally evaluated the performance of LAMAP
and LAMAB considering three types of problems:

Soft Goals (SG) Planning with zero action costs and (com-
piled) soft goals.

Net Benefit (NB) Planning with non-zero action costs
and (compiled) soft goals, called net-benefit planning
(Van den Briel et al. 2004)

145



LAMAB(hR)
Pure Soft Goals

Domains (#problem)
%pruned better worse equal search reduction optimal

Trucks (40) 65.87 24 3 13 (0) 0.03 19 (12)
TPP (40) 24.09 12 2 26 (1) 0.22 8 (7)

Storage (40) 41.94 5 1 34 (14) 0.14 7 (7)
Openstacks (40) 63.31 31 2 7 (4) 0.04 7 (0)

Pegsol (30) 54.28 0 0 30 (0) 0.16 30 (28)
Pathways (30) 93.71 0 0 30 (25) 0.04 4 (4)

Total (220) 64.48 72 8 140 (44) 0.12 75 (58)

LAMAB(hLMCut)
Pure Soft Goals

Domains (#problem)
%pruned better worse equal search reduction optimal

Trucks (40) 62.02 23 3 14 (0) 0.03 19 (12)
TPP (40) 24.09 12 2 26 (1) 0.22 8 (7)

Storage (40) 32.14 6 1 33 (14) 0.14 7 (7)
Openstacks (40) 55.86 31 2 7 (4) 0.04 6 (0)

Pegsol (30) 54.29 0 0 30 (0) 0.03 28 (28)
Pathways (30) 93.71 0 0 30 (25) 0.04 4 (4)

Total (220) 61.17 72 8 140 (44) 0.05 72 (58)

Table 1: LAMAB versus LAMA without restarts for
SG problems. “%pruned”: % of nodes pruned over
all visited nodes for all instances of the domain; “bet-
ter”/“worse”/“equal”: instances where LAMAB finds a
solution better/worse/equal relative to LAMA’s solution
(in brackets instances equally solved by the first GBFS);
“search reduction”: ratio between the overall numbers of
nodes expanded by LAMAB in relation to LAMA, from time
of first solution to a solution that agrees in quality; “opti-
mal”: instances where LAMAB (and in brackets LAMA)
finds provably optimal solutions .

Action Costs (AC) Planning with non-zero action costs
and no soft goals.

Plan quality is defined as the weighted sum of violated
soft goals for SG, the difference between the utility of the
achieved soft goals and the total costs of the plan actions for
NB, and the sum of plan action costs for AC. For each of the
three problem types, we evaluate LAMAP and LAMAB, and
compare them with LAMA. For the SG and NB problems,
we also give results showing that LAMA with pruning is
competitive with two state-of-the-art planners that natively
support soft goals: OPTIC (Benton, Coles, and Coles 2012)
and GBL15-NB-B15 (Coles and Coles 2013).1

The benchmark domains that we consider are all those of
the last four IPCs that are supported by the planners. These
are: for SG, five domains from IPC-2006 (Trucks, TPP, Stor-
age, Pathways and Openstacks) and one domain from the
Net Benefit track of IPC-2008 where all action costs are
zero (Pegsol); for NB, two domains from IPC-2008 (Eleva-
tors and Openstacks-08) and a domain from IPC-2006 that
has both soft goals and non-zero action costs (Rovers); for
AC, all the domains from IPC-2011 and IPC-2014 except
those with conditional effects (because hLMCut does not sup-
port them) and a domain for which LAMA finds no solution.

1These planners were run using the original (uncompiled) prob-
lems. We thank the authors for making their code available.

LAMAP(hR)

Net Benefit
Domains (#problems)

%pruned better worse equal search reduction optimal

Rovers (20) 47.26 1 0 19 (0) 0.22 8 (8)
Openstacks-08 (30) 32.52 27 0 3 (0) < 0.01 6 (3)

Elevators (30) 47.33 0 0 30 (0) 0.5 11 (12)
Total (80) 40.53 28 0 52 (0) 0.15 25 (23)

LAMAP(hLMCut)

Net Benefit
Domains (#problems)

%pruned better worse equal search reduction optimal

Rovers (20) 58.9 0 1 19 (0) 0.03 13 (8)
Openstacks-08 (30) 30.7 27 0 3 (0) < 0.01 6 (3)

Elevators (30) 67.19 0 2 28 (0) 0.02 18 (12)
Total (80) 45.64 27 3 50 (0) 0.01 37 (23)

Table 2: LAMAP versus LAMA for NB problems.
“%pruned”: % of nodes pruned over all visited nodes
for all instances of the domain; “better”/“worse”/“equal”:
instances where LAMAP finds a solution that is bet-
ter/worse/equal relative to LAMA’s solution (in brackets
the instances equally solved by the initial greedy search);
“search reduction”: ratio between the overall numbers of
nodes expanded by LAMAP in relation to LAMA, from time
of first solution to a solution that agrees in quality; “op-
timal”: instances where LAMAP (and in brackets LAMA)
finds provably optimal solutions.

Planner TOTAL SG TOTAL NB TOTAL SG+NB
LAMAB(hR) 215.17 77.77 292.94
LAMAP(hR) 210.04 79.76 289.8

LAMAB(hLMCut)
208.39 77.32 285.71

LAMAP(hLMCut) 203.76 79.36 283.12
LAMA2011 184.77 73.67 258.44

Table 3: Total IPC scores for the SG benchmarks and NB
benchmarks of LAMAP/B compared with standard LAMA.

Overall, we used 32 domains and 760 instances.
All the experiments were conducted on a 2.00GHz Core

Intel(R) Xeon(R) CPU E5-2620 machine with CPU-time
and memory limits of 30 minutes and 8GiB, respectively, for
each run of every tested planner. The time for the soft goal
compilation was included in the 30 minutes. All versions of
LAMA were run with its default weights of WA*.

For lack of space we present a selection of the re-
sults. In particular, for each considered benchmark do-
main, we compare the performance of LAMA with:
LAMAB(hR) and LAMAB(hLMCut) for solving SG prob-
lems; LAMAP(hR) and LAMAP(hLMCut) for solving NB
problems; and LAMAP(hLMCut) for solving AC problems
(hR is undefined without soft goals). Moreover, for SG
and NB problems, we compare every considered version of
LAMA in terms of total IPC score (introduced at IPC-2008)
using all domains together (Table 3). As reference plan in
the IPC score definition of a problem, we used the best plan
generated by the compared planners solving the problem.

Regarding the use of LAMAP for SG problems and
LAMAB for NB and AC problems, we observed that they
give results that in general are less good (see Table 3). In
particular, LAMAB for NB and AC appears to be less per-

146



Planner TOTAL SG TOTAL NB TOTAL SG+NB
GBL15-NB-B15 164.74 75.18 239.92
LAMAP(hR) 161.99 77.72 239.71
LAMAB(hR) 154.84 75.74 230.58

OPTIC 157.68 62.41 220.09

Table 4: Total IPC scores for the SG benchmarks and
NB benchmarks of LAMAP/B(hR), OPTIC and GBL15-NB-
B15. Domain Openstacks was not used for NB because it
contains conditional effects supported only by LAMAP and
LAMAB.

formant than LAMAP because the lack of restarts decreases
the number of solutions (Richter, Thayer, and Ruml 2010)
and so also the bounds to use for the pruning.

Tables 1-2 and 5 show aggregated results for LAMA ver-
sus LAMAB and LAMAP, while Table 4 compares two of
the considered versions of LAMA with pruning with two
state-of-the-art planners supporting soft goals. In Tables 1-2
and 5, every planner solved the same subset of the problems.

Column “%pruned” is the percentage of search nodes that
are pruned during search over all visited nodes for all in-
stances of the domain (the first greedy search of LAMAP
and LAMAB is not considered because in this search prun-
ing is not applied). Columns “better”, “worse” and “equal”
give the number of instances in which LAMA with pruning
finds a solution that is better, worse and equal, respectively,
with respect to the solution of LAMA without pruning; the
values in brackets in the “equal” column indicate the num-
ber of instances where both compared planners found just
one solution (through their initial greedy search). Column
“search reduction” gives, for each domain, the ratio between
the total numbers of nodes expanded by LAMA with prun-
ing in relation to LAMA without pruning, after their first
greedy search, considering for each instance the nodes ex-
panded in all search episodes until a solution that agrees in
quality is found by both planners.2 This ratio is a measure of
the overall search space reduction obtained with the pruning.
Column “optimal” gives the number of instances where an
optimal plan was found by fully exploring the search space;
the values in brackets are for LAMA without pruning, the
others for LAMA with pruning.

Results for pure soft goals problems (SG). For this class
of problems, we compare LAMAP/B with a version of stan-
dard LAMA where the restarts of WA* are disabled. This is
because we observed that, for the SG benchmarks, LAMA
without restarts performs generally better than the standard
LAMA.3

The results in Table 1 show that LAMAB(hR) does con-
siderable pruning, obtaining in Trucks, TPP and Openstacks

2All instances for which only one of the two planners finds a
solution after the first GBFS are ignored. If both planners find
more solutions of the same increasing qualities, the last of them is
considered.

3In LAMA without restarts as in LAMAB the search continues
after finding a solution, with the search heuristic weighted accord-
ing to the same default sequence of decreasing weights in LAMA’s
WA* (weights are changed when an improved solution is found).

AC domains of
IPC-2011 (#problems)

%pruned better worse equal search reduction optimal

Tidybot (20) 10.78 1 0 15 (0) 0.96 4 (0)
Visitall (20) 8.41 2 5 13 (5) 0.99 0 (0)

Nomystery (20) 19.44 4 0 9 (3) 0.03 7 (3)
Woodworking (20) 69.14 3 0 17 (12) 0.67 1 (1)

Transport (20) 0.07 0 0 17 (12) 1.0 0 (0)
Floortile (20) 36.4 1 0 5 (1) 0.17 3 (2)

Openstacks-11 (20) 74.03 0 9 11 (0) 0.24 0 (0)
Elevators (20) 0.14 0 0 20 (19) 0.99 0 (0)
Barman (20) 0.0 0 0 20 (19) 1.0 0 (0)
Pegsol (20) 37.13 2 0 18 (0) 0.44 17 (17)

Scanalyzer (20) 40.24 8 3 9 (0) 0.21 1 (0)
Parking (20) 7.34 1 4 15 (5) 0.81 0 (0)
Sokoban (20) 2.28 0 3 16 (5) 0.54 10 (7)

Parcprinter (20) 34.46 11 0 9 (4) 0.33 3 (0)
Total (280) 27.36 33 24 194 (85) 0.33 46 (30)

AC Domains of
IPC-2014 (#problems)

%pruned better worse equal search reduction optimal

Visitall (20) 0.0 0 0 20 (17) 1.0 0 (0)
Openstacks-14 (20) 0.01 3 1 16 (0) 0.98 0 (0)

GED (20) 1.43 0 4 16 (1) 0.96 0 (0)
thoughtful (20) 41.85 3 2 10 (1) 0.04 5 (1)

Barman (20) — 0 0 19 (19) — 0 (0)
Parking (20) 2.73 2 2 16 (7) 0.98 0 (0)
Tetris (20) 6.18 0 0 7 (6) 0.92 0 (0)

Transport (20) 0.01 0 0 12 (8) 1.0 0 (0)
Floortile (20) 20.86 0 0 2 (0) 0.35 2 (2)
Total (180) 12.32 8 9 118 (59) 0.43 7 (3)

Table 5: LAMAP(hLMCut) versus LAMA for AC prob-
lems. “%pruned”: % of nodes that are pruned over
all visited nodes for all instances of the domain; “bet-
ter”/“worse”/“equal”: instances in which LAMAP finds a
solution that is better/worse/equal relative to the solution of
LAMA (in brackets the instances equally solved by the first
GBFS); “search reduction”: ratio between the overall num-
bers of nodes expanded by LAMAP in relation to LAMA,
from time of first solution to a solution that agrees in qual-
ity; “optimal”: instances where LAMAP (and in brackets
LAMA) finds provably optimal solutions; “–”: for every in-
stance of the domain, no one of the planners improved the
1st solution computed by the first GBFS.

solutions that are often better, and finding optimal solu-
tions more often too. In Pegsol, LAMAB(hR) and LAMA
find the same solutions (almost always proved optimal)
but LAMAB(hR) expands much less nodes. In Storage
LAMAB(hR) performs slighty better and in Pathways the
pruning is ineffective. In terms of optimally solved prob-
lems, overall LAMAB(hR) finds provably optimal solutions
for 17 more instances. The results for LAMAB(hLMCut) ver-
sus LAMA are similar.

Table 3 shows that for SG LAMAP/B(hR) performs bet-
ter than LAMAP/B(hLMCut) and significantly better than
LAMA, in terms of total IPC score over the considered 8
domains. Table 4 shows that for SG LAMAP(hR) performs
slightly better than OPTIC and slightly worse than GBL15-
NB-B15. The problem coverage of the compared planners
is the same.

Results for net benefit problems (NB). Table 2 shows
that LAMAP does considerable pruning, and performs dra-

147



matically better in Openstacks, where the pruning is very
effective, as indicated by the search reduction value. In
the other two domains, while the pruning significantly re-
duces the search search space, no better solution is pro-
duced, except for one instance in Rovers using hR. While
pruning with hLMCut gives a stronger search reduction than
hR, it leads to the same number of better solutions and to 3
worse solutions, probably due to the higher cost of comput-
ing hLMCut. On the other hand, pruning with hLMCut gives
a higher number of problems that are optimally solved (12
more instances).

Table 4 shows that for NB LAMAP(hR) is the best per-
forming planner,4 and for both SG and NB (SG+NB) it is
competitive with the state-of-the-art planners supporting soft
goals. The problem coverage of the compared planners for
the considered domains is the same.

Results for action costs problems (AC). Table 5 gives re-
sults for the considered AC problems. The IPC-2011 and
IPC-2014 benchmarks are shown separate as the results are
qualitatively different in them. The 2014 benchmarks tend
to be significantly harder for LAMA, and, with CPU time
and memory limits used in our experiments, a large number
of them are unsolved or solved only by the initial greedy
search, providing an initial quality bound that is not im-
proved within the given CPU time. In the IPC-2011 bench-
marks, LAMAP computes better solutions for 33 instances
and worse solutions for 24 instances. The better solutions of
LAMAP are distributed over 9 domains and the worse solu-
tions over 5 domains. In 9 domains the search reduction is
significant and in 4 domains it is negligible or nonexistent.
LAMAP generated provably optimal solutions for 16 more
problems distributed over 5 domains, which gives further ev-
idence that the search space can be significantly reduced by
the pruning also in the AC setting.

The picture is less clear for the IPC-2014 benchmarks.
Under our experimental settings, the use of pruning for these
benchmarks does not lead to significant improvements and
the compared planners perform similarly.

Conclusions

While admissible heuristics are essential for optimal plan-
ning, they are seldom used in satisficing planners, even when
there is a time window for improving the first solution found.
In this work we have shown, however, that existing and new
admissible heuristics can be effectively used for pruning in
a statisficing planner like LAMA. Even heuristics such as
LM-cut that are expensive, turn out to be often effective.
In the case of planning with soft goals, cheaper but less in-
formative admissible heuristics can be more cost-effective.
Our experimental results confirm that the use of admissible
heuristics can play a crucial role also in the practical settings
of satisficing and anytime optimal planning.

4In the experiment of Table 3 LAMAB(hR) performs better than
LAMAP(hR) because this experiment includes a domain for SG
(Openstacks), where LAMAP(hR) performs best, that is not used
in the experiment of Table 4 since it not supported by OPTIC and
GBL15-NB-B15.

Acknowledgements

We thank the anonymous reviewers for their detailed and
helpful comments.

References
Applegate, D.; Bixby, R.; Chvatal, V.; and Cook, W. 2011. The
traveling salesman problem: a computational study. Princeton
University Press.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs. In
Proceedings of the 22nd International Conference on Automated
Planning and Scheduling.
Coles, A. J., and Coles, A. 2013. Searching for good solutions
in goal-dense search spaces. In Proceedings of the 23rd Inter-
national Conference on Automated Planning and Scheduling.
Geffner, H., and Bonet, B. 2013. A concise introduction to mod-
els and methods for automated planning. Morgan & Claypool
Publishers.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated Plan-
ning and Acting. Cambridge University Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths
and abstractions: What is the difference anyway? In Proceed-
ings of the 19th International Conference on Automated Plan-
ning and Scheduling.
Helmert, M. 2006. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, 1728–1733.
Keyder, E., and Geffner, H. 2008. Heuristics for planning with
action costs revisited. In Proceedings of the 18th European Con-
ference on Artificial Intelligence.
Keyder, E., and Geffner, H. 2009. Soft goals can be compiled
away. Journal of Artificial Intelligence Research 36:547–556.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:122–177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The joy of for-
getting: Faster anytime search via restarting. In Proceedings of
the 20th International Conference on Automated Planning and
Scheduling.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal search:
A direct approach using inadmissible estimates. In Proceedings
of the 22nd International Joint Conference on Artificial Intelli-
gence, 674–679.
Thayer, J. T.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between so-
lutions. In Proceedings of the Fifth Annual Symposium on Com-
binatorial Search, 120–128.
Van den Briel, M.; Sanchez, R.; Do, M. B.; and Kambhampati,
S. 2004. Effective approaches for partial satisfaction (over-
subscription) planning. In Proceedings of the 19th National
Conference on Artificial Intelligence.

148


