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Dynamic System

The classical view of a dynamic system
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x : state
z : observations
w , v : noise

f : state transition model
h: observation model
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Reasoning vs. Learning in Dynamic Systems
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Reasoning: given the model (f , h) and the current state xk , predict the
future (xk+T , zk+T ).

Learning: given past experience (z0:k), determine the model (f , h).
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State of a Dynamic System

The state x encodes:

all the past knowledge needed to predict the future

the knowledge gathered through operation

the knowledge needed to pursue the goal

Examples:

configuration of a board game

configuration of robot devices

screenshot of a video-game
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Observability of the state

When the state is fully observable, the decision making problem for an
agent is to decide which action must be executed in a given state.

The agent has to compute the function

π : X 7→ A

When the model of the system is not known, the agent has to learn the
function π.
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Supervised vs. Reinforcement Learning

Supervised Learning
Learning a function f : X → Y , given

D = {〈xi , yi 〉}

Reinforcement Learning
Learning a behavior function π : X→ A, given

D = {〈x1, a1, r1, . . . , xn, an, rn〉(i)}
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Example: Tic-Tac-Toe
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Example: Tic Tac Toe
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RL Example: Humanoid Walk
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RL Example: Controlling an Helicopter
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Deep Reinforcement Learning: ATARI games

Deep Q-Network (DQN) by Deep Mind (Google)

Human-level control through Deep Reinforcement Learning, Nature (2015)
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Dynamic System Representation

X: set of states

explicit discrete and finite representation X = {x1, . . . , xn}
continuous representation X = F (. . .) (state function)

probabilistic representation P(X) (probabilistic state function)

A: set of actions

explicit discrete and finite representation A = {a1, . . . , am}
continuous representation A = U(. . .) (control function)

δ: transition function

deterministic / non-deterministic / probabilistic

Z: set of observations

explicit discrete and finite representation Z = {z1, . . . , zk}
continuous representation Z = Z (. . .) (observation function)

probabilistic representation P(Z) (probabilistic observation function)
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Markov property

Markov property

Once the current state is known, the evolution of the dynamic system
does not depend on the history of states, actions and observations.

The current state contains all the information needed to predict the
future.

Future states are conditionally independent of past states and past
observations given the current state.

The knowledge about the current state makes past, present and
future observations statistically independent.

Markov process is a process that has the Markov property.
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Markov Decision Processes (MDP)

Markov processes for decision making.

States are fully observable, no need of observations.

Graphical model
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Markov Decision Processes (MDP)

Deterministic transitions

MDP = 〈X,A, δ, r〉

X is a finite set of states

A is a finite set of actions

δ : X× A→ X is a transition function

r : X× A→ < is a reward function

Markov property: xt+1 = δ(xt , at) and rt = r(xt , at)
Sometimes, the reward function is defined as r : X→ <
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Markov Decision Processes (MDP)

Non-deterministic transitions

MDP = 〈X,A, δ, r〉

X is a finite set of states

A is a finite set of actions

δ : X× A→ 2X is a transition function

r : X× A× X→ < is a reward function

L. Iocchi, F. Patrizi MDPs and Reinforcement Learning 18 / 79



Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Markov Decision Processes (MDP)

Stochastic transitions

MDP = 〈X,A, δ, r〉

X is a finite set of states

A is a finite set of actions

P(x′|x, a) is a probability distribution over transitions

r : X× A× X→ < is a reward function
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Example: deterministic grid controller

Reaching the right-most side of the environment from any initial state.

MDP 〈X,A, δ, r〉
X = {(r , c)|coordinates in the grid}
A = {Left,Right,Up,Down}
δ: cardinal movements with no effects (i.e., the agent remains in the
current state) if destination state is a black square

r : 1000 for reaching the right-most column, -10 for hitting any
obstacle, 0 otherwise
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Example: non-deterministic grid controller

Reaching the right-most side of the environment from any initial state.

MDP 〈X,A, δ, r〉
X = {(r , c)|coordinates in the grid}
A = {Left,Right}
δ: cardinal movements with non-deterministic effects
(0.1 probability of moving diagonally)

r : 1000 for reaching the right-most column, -10 for hitting any
obstacle, +1 for any Right action, -1 for any Left action.
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Full Observability in MDP

States are fully observable.

In presence of non-deterministic or stochastic actions, the state resulting
from the execution of an action is not known before the execution of the
action, but it can be fully observed after its execution.
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MDP Solution Concept

Given an MDP, we want to find an optimal policy.

Policy is a function

π : X→ A

For each state x ∈ X, π(x) ∈ A is the optimal action to be executed in
such state.

optimality = maximize the cumulative reward.
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MDP Solution Concept

Optimality is defined with respect to maximizing the (expected value of
the) cumulative discounted reward.

V π(x1) ≡ E [r̄1 + γ r̄2 + γ2r̄3 + . . .]

where r̄t = r(xt , at , xt+1), at = π(xt), and γ ∈ [0, 1] is the discount factor
for future rewards.

Optimal policy: π∗ ≡ argmaxπ V
π(x) , ∀x ∈ X

L. Iocchi, F. Patrizi MDPs and Reinforcement Learning 24 / 79



Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Value function

Deterministic case

V π(x) ≡ r1 + γr2 + γ2r3 + . . .

Non-deterministic/stochastic case:

V π(x) ≡ E [r1 + γr2 + γ2r3 + . . .]
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Optimal policy

π∗ is an optimal policy iff for any other policy π

V π∗(x) ≥ V π(x),∀x

For infinite horizon problems, a stationary MDP always has an optimal
stationary policy.
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Example: non-deterministic grid controller

Optimal policy

green: action Left red: action Right
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Reasoning and Learning in MDP

Problem: MDP 〈X,A, δ, r〉

Solution: Policy π : X→ A

If the MDP 〈X,A, δ, r〉 is completely known → reasoning or planning

If the MDP 〈X,A, δ, r〉 is not completely known → learning

Note: Simple examples of reasoning in MDP can be modeled as a search
problem and solved using standard search algorithm (e.g., A*).
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One-state Markov Decision Processes (MDP)

MDP = 〈{x0},A, δ, r〉

x0 unique state

A finite set of actions

δ(x0, ai ) = x0, ∀ai ∈ A transition function

r(x0, ai , x0) = r(ai ) reward function

Optimal policy: π∗(x0) = ai
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Deterministic One-state MDP

If r(ai ) is deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A r(ai )

What if reward function r is unknown?
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Deterministic One-state MDP

If r(ai ) is deterministic and unknown, then

Algorithm:

1 for each ai ∈ A
execute ai and collect reward r(i)

2 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A| r(i)

Note: exactly |A| iterations are needed.
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Non-Deterministic One-state MDP

If r(ai ) is non-deterministic and known, then

Optimal policy: π∗(x0) = argmaxai∈A E [r(ai )]

Example:

If r(ai ) = N (µi , σi ), then

π∗(x0) = ai , with i = argmaxi=1...|A| µi
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Non-Deterministic One-state MDP

If r(ai ) is non-deterministic and unknown, then

Algorithm:

1 Initialize a data structure Θ
2 For each time t = 1, . . . ,T (until termination condition)

choose an action a(t) ∈ A
execute a(t) and collect reward r(t)

Update the data structure Θ

3 Optimal policy: π∗(x0) = . . ., according to the data structure Θ

Note: many iterations (T >> |A|) are needed.
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Non-Deterministic One-state MDP

Example:

If r(ai ) is non-deterministic and unknown and r(ai ) = N (µi , σi ), then

Algorithm:

1 Initialize Θ(0)[i ]← 0 and c[i ]← 0, i = 1...|A|
2 For each time t = 1, . . . ,T (until termination condition)

choose an index ı̂ for action a(t) = âı ∈ A
execute a(t) and collect reward r(t)

increment c [̂ı]
update Θ(t) [̂ı]← 1

c [̂ı] ( r(t) + (c [̂ı]− 1)Θ(t−1) [̂ı] )

3 Optimal policy: π∗(x0) = ai , with i = argmaxi=1...|A|Θ(T )[i ]
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Learning with Markov Decision Processes

Given an agent accomplishing a task according to an MDP 〈X,A, δ, r〉,
for which functions δ and r are unknown to the agent,

determine the optimal policy π∗

Note: This is not a supervised learning approach!

Target function is π : X→ A

but we do not have training examples {(x(i), π(x(i)))}
training examples are in the form 〈(x(1), a(1), r(1)), . . . , (x(t), a(t), r(t))〉
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Agent’s Learning Task

Since δ and r are not known, the agent cannot predict the effect of its
actions. But it can execute them and then observe the outcome.

The learning task is thus performed by repeating these steps:

choose an action

execute the chosen action

observe the resulting new state

collect the reward
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Approaches to Learning with MDP

Value iteration
(estimate the Value function and then compute π)

Policy iteration
(estimate directly π)
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Learning through value iteration

The agent could learn the value function V π∗(x) (written as V ∗(x))

From which it could determine the optimal policy:

π∗(x) = argmax
a∈A

[ r(x, a) + γV ∗(δ(x, a)) ]

However, this policy cannot be computed in this way because δ and r are
not known.
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Q Function (deterministic case)

Qπ(x, a): expected value when executing a in the state x and then act
according to π.

Qπ(x, a) ≡ r(x, a) + γV π(δ(x, a))

Q(x, a) ≡ r(x, a) + γV ∗(δ(x, a))

If the agent learns Q, then it can determine the optimal policy without
knowing δ and r .

π∗(x) = argmax
a∈A

Q(x, a)
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Q Function (deterministic case)

Observe that

V ∗(x) = max
a∈A
{r(x, a) + γV ∗(δ(x, a))} = max

a∈A
Q(x, a)

Thus, we can rewrite

Q(x, a) ≡ r(x, a) + γV ∗(δ(x, a))

as

Q(x, a) = r(x, a) + γmax
a′∈A

Q(δ(x, a), a′)
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Training Rule to Learn Q (deterministic case)

Deterministic case:

Q(x, a) = r(x, a) + γmax
a′∈A

Q(δ(x, a), a′)

Let Q̂ denote learner’s current approximation of Q.

Training rule:

Q̂(x, a)← r̄ + γmax
a′

Q̂(x′, a′)

where r̄ is the immediate reward and x′ is the state resulting from applying
action a in state x.
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Q Learning Algorithm for Deterministic MDPs

1 for each x, a initialize table entry Q̂(0)(x, a)← 0

2 observe current state x
3 for each time t = 1, . . . ,T (until termination condition)

choose an action a

execute the action a

observe the new state x′

collect the immediate reward r̄

update the table entry for Q̂(x, a) as follows:

Q̂(t)(x, a)← r̄ + γmax
a′∈A

Q̂(t−1)(x
′, a′)

x← x′

4 Optimal policy: π∗(x) = argmaxa∈A Q̂(T )(x, a)

Note: not using δ and r , but just observing new state x′ and immediate
reward r̄ , after the execution of the chosen action.

L. Iocchi, F. Patrizi MDPs and Reinforcement Learning 42 / 79



Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Convergence in deterministic MDP

Q̂n(x, a) underestimates Q(x, a)

We have: 0 ≤ Q̂n(x, a) ≤ Q̂n+1(x, a) ≤ Q(x, a)

Convergence guranteed if all state-action pairs visited infinitely often
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Experimentation Strategies

How actions are chosen by the agents?
Exploitation: select action a that maximizes Q̂(x, a)
Exploration: select random action a (with low value of Q̂(x, a))

ε-greedy strategy

Given, 0 ≤ ε ≤ 1,
select a random action with probability ε
select the best action with probability 1− ε

ε can decrease over time (first exploration, then exploitation).
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Experimentation Strategies

soft-max strategy

actions with higher Q̂ values are assigned higher probabilities, but every
action is assigned a non-zero probability.

P(ai |x) =
kQ̂(x,ai )

∑
j k

Q̂(x,aj )

k > 0 determines how strongly the selection favors actions with high Q̂
values.
k may increase over time (first exploration, then exploitation).
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Example: grid world

Reaching the goal state G from initial
state S0.
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0

MDP 〈X,A, δ, r〉
X = {S0, S1,S2,S3, S4,G}
A = {L,R,U,D}
δ represented as arrows in the figure (e.g., δ(S0,R) = S1)

r(x, a) represented as red values on the arrows in the figure (e.g.,
r(S0,R) = 0)

L. Iocchi, F. Patrizi MDPs and Reinforcement Learning 46 / 79



Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Example: grid world
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Example: Grid World
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V ∗(x) values One optimal policy
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Example: Hanoi Tower
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Evaluating Reinforcement Learning Agents

Evaluation of RL agents is usually performed through the cumulative
reward gained over time.
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Evaluating Reinforcement Learning Agents

Cumulative reward plot may be very noisy (due to exploration phases).
A better approach could be:

Repeat until termination condition:

1 Execute k steps of learning

2 Evaluate the current policy πk (average and stddev of cumulative
reward obtained in d runs with no exploration)
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Evaluating Reinforcement Learning Agents

Domain-specific performance metrics can also be used.

Average of all the results obtained during the learning process.
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Non-deterministic Case

Transition and reward functions are non-deterministic.

We define V ,Q by taking expected values

V π(x) ≡ E [rt + γrt+1 + γ2rt+2 + . . .]

≡ E [
∞∑

i=0

γ i rt+i ]

Optimal policy

π∗ ≡ argmax
π

V π(x), (∀x)
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Non-deterministic Case

Definition of Q

Q(x, a) ≡ E [r(x, a) + γV ∗(δ(x, a))]

= E [r(x, a)] + γE [V ∗(δ(x, a))]

= E [r(x, a)] + γ
∑

x ′
P(x′|x, a)V ∗(x′)

= E [r(x, a)] + γ
∑

x ′
P(x′|x, a) max

a′
Q(x′, a′)

Optimal policy

π∗(x) = argmax
a∈A

Q(x, a)
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Example: k-Armed Bandit

One state MDP with k actions: a1, . . . , ak .

Stochastic case: r(ai ) = N (µi , σi ) Gaussian distribution

Choose ai with ε-greedy strategy:
uniform random choice with prob. ε (exploration),
best choice with probability 1− ε (exploitation).

Training rule:

Qn(ai )← Qn−1(ai ) + α[r̄ − Qn−1(ai )]

α =
1

1 + vn−1(ai )

with vn−1(ai ) = number of executions of action ai up to time n − 1.
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Exercise: k-Armed Bandit

Compare the following two strategies for the stochastic k-Armed Bandit
problem (with Gaussian distributions), by plotting the reward over time.

1 For each of the k actions, perform 30 trials and compute the mean
reward; then always play the action with the highest estimated mean.

2 ε-greedy strategy (with different values of ε) and training rule from
previous slide.

Note: realize a parametric software with respect to k and the parameters
of the Gaussian distributions and use the following values for the
experiments: k = 4, r(a1) = N (100, 50), r(a2) = N (90, 20),
r(a3) = N (70, 50), r(a4) = N (50, 50).
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Example: k-Armed Bandit

What happens if parameters of Gaussian distributions slightly varies over
time, e.g. µi ± 10% at unknown instants of time (with much lower
frequency with respect to trials) ?

Qn(ai )← Qn−1(ai ) + α[r̄ − Qn−1(ai )]

α = constant
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Non-deterministic Q-learning

Q learning generalizes to non-deterministic worlds with training rule

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γmax
a′

Q̂n−1(x′, a′)− Q̂n−1(x, a)]

which is equivalent to

Q̂n(x, a)← (1− α)Q̂n−1(x, a) + α[r + γmax
a′

Q̂n−1(x′, a′)]

where

α = αn−1(x, a) =
1

1 + visitsn−1(x, a)

visitsn(x, a): total number of times state-action pair (x, a) has been visited
up to n-th iteration

L. Iocchi, F. Patrizi MDPs and Reinforcement Learning 58 / 79



Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Convergence in non-deterministic MDP

Deterministic Q-learning does not converge in non-deterministic
worlds! Q̂n+1(x, a) ≥ Q̂n(x, a) is not valid anymore.

Non-deterministic Q-learning also converges when every pair state,
action is visited infinitely often [Watkins and Dayan, 1992].
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Example: non-deterministic Grid World
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Other algorithms for non-deterministic learning

Temporal Difference

SARSA
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Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

Q(1)(xt , at) ≡ rt + γmax
a

Q̂(xt+1, a)

Two steps time difference:

Q(2)(xt , at) ≡ rt + γrt+1 + γ2 max
a

Q̂(xt+2, a)

n steps time difference:

Q(n)(xt , at) ≡ rt + γrt+1 + · · ·+ γ(n−1)rt+n−1 + γn max
a

Q̂(xt+n, a)

Blend all of these (0 ≤ λ ≤ 1):

Qλ(xt , at) ≡ (1− λ)
[
Q(1)(xt , at) + λQ(2)(xt , at) + λ2Q(3)(xt , at) + · · ·

]
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Temporal Difference Learning

Qλ(xt , at) ≡ (1− λ)
[
Q(1)(xt , at) + λQ(2)(xt , at) + λ2Q(3)(xt , at) + · · ·

]

Equivalent expression:

Qλ(xt , at) = rt + γ[(1− λ) max
a

Q̂(xt , at) + λ Qλ(xt+1, at+1)]

λ = 0: Q(1) learning as seen before

λ > 0: algorithm increases emphasis on discrepancies based on more
distant look-aheads

λ = 1: only observed rt+i are considered.
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Temporal Difference Learning

Qλ(xt , at) = rt + γ[(1− λ) max
a

Q̂(xt , at) + λ Qλ(xt+1, at+1)]

TD(λ) algorithm uses above training rule

Sometimes converges faster than Q learning

converges for learning V ∗ for any 0 ≤ λ ≤ 1 [Dayan, 1992]

TD-Gammon [Tesauro, 1995] uses this algorithm (approximately
equal to best human backgammon player).
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SARSA

SARSA is based on the tuple < s, a, r , s ′, a′ > ( < x, a, r , x′, a′ > in our
notation).

Q̂n(x, a)← Q̂n−1(x, a) + α[r + γQ̂n−1(x′, a′)− Q̂n−1(x, a)]

a′ is chosen according to a policy based on current estimate of Q.

On-policy method: it evaluates the current policy
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Convergence of non-deterministic algorithms

Fast convergence does not imply better solution in the optimal policy.

Example: comparison among Q-learning, TD, and SARSA.
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Remarks on explicit representation of Q

Explicit representation of Q̂ table may not be feasible for large
models.

Algorithms perform a kind of rote learning. No generalization on
unseen state-action pairs.

Convergence is guaranteed only if every possible state-action pair is
visited infinitely often.
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Remarks on explicit representation of Q

Use function approximation:

Qθ(x, a) = θ0 + θ1F1(x, a) + . . .+ θnFn(x, a)

Use linear regression to learn Qθ(x, a).
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Remarks on explicit representation of Q

Use a neural network as function approximation and learn function Q with
Backpropagation.

Implementation options:

Train a network, using (x, a) as input and Q̂(x, a) as output

Train a separate network for each action a, using x as input and
Q̂(x, a) as output

Train a network, using x as input and one output Q̂(x, a) for each
action

TD-Gammon [Tesauro, 1995] uses a neural network and the
Backpropagation algorithm together with TD(λ).
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Reinforcement Learning with Policy Iteration

Use directly π instead of V (x) or Q(x, a).

Parametric representation of π: πθ(x) = maxa∈A Q̂θ(x, a)

Policy value: ρ(θ) = expected value of executing πθ.

Policy gradient: ∆θρ(θ)
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Policy Gradient Algorithm

Policy gradient algorithm for a parametric representation of the policy
πθ(x)

choose θ
while termination condition do

estimate ∆θρ(θ) (through experiments)
θ ← θ + η∆θρ(θ)

end while
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Policy Gradient Algorithm

Policy Gradient Algorithm for robot learning [Kohl and Stone, 2004]

Estimate optimal parameters of a controller πθ = {θ1, ..., θN}, given an
objective function F .
Method is based on iterating the following steps:

1) generating perturbations of πθ by modifying the parameters
2) evaluate these perturbations
3) generate a new policy from ”best scoring” perturbations
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Policy Gradient Algorithm

General method

π ← InitialPolicy
while termination condition do

compute {R1, ...,Rt}, random perturbations of π
evaluate {R1, ...,Rt}
π ← getBestCombinationOf({R1, ...,Rt})

end while

Note: in the last step we can simply set π ← argmaxRj
F (Rj)

(i.e., hill climbing).
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Policy Gradient Algorithm

Perturbations are generated from π by

Ri = {θ1 + δ1, ..., θN + δN}
with δj randomly chosen in {−εj , 0,+εj}, and εj is a small fixed value
relative to θj .
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Policy Gradient Algorithm

Combination of {R1, ...,Rt} is obtained by computing for each parameter j :
- Avg−ε,j : average score of all Ri with a negative perturbations
- Avg0,j : average score of all Ri with a zero perturbation
- Avg+ε,j : average score of all Ri with a positive perturbations
Then define a vector A = {A1, ...,AN} as follows

Aj =

{
0 if Avg0,j > Avg−ε,j and Avg0,j > Avg+ε,j

Avg+ε,j − Avg−ε,j otherwise

and finally

π ← π +
A

|A|η
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Policy Gradient Algorithm

Task: optimize AIBO gait for fast and stable locomotion [Saggar et al.,
2006]
Objective function F

F = 1− (WtMt + WaMa + WdMd + WθMθ)

Mt : normalized time to walk between two landmarks
Ma: normalized standard deviation of AIBO’s accelerometers
Md : normalized distance of the centroid of landmark from the image
center
Mθ: normalized difference between slope of the landmark and an ideal
slope
Wt ,Wa,Wd ,Wθ: weights
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Example: Robot Learning
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