
Chapter 8

Processing Qualitative Temporal
Constraints

Alfonso Gerevini

In this chapter we provide an overview of the main techniques for processing qualitative
temporal constraints. We survey a collection of algorithms for solving fundamental reason-
ing problems in the context of Allen’s Interval Algebra, Vilain and Kautz’s Point Algebra,
and of other tractable and intractable classes of temporal relations. These problems include
determining the satisfiability of a given set S of constraints; finding a consistent instantiation
of the variables in S; deducing new (implicit) constraints from S, and computing the minimal
network representation of S.

8.1 Introduction

Reasoning about qualitative temporal information has been an important research field in ar-
tificial intelligence (AI) for two decades, and it has been applied in the context of various AI
areas. Such areas include knowledge representation (e.g., [Schmiedel, 1990; Miller, 1990;
Schubert and Hwang, 1989; van Beek, 1991; Artale and Franconi, 1994]), natural language
understanding (e.g., [Allen, 1984; Miller and Schubert, 1990; Song and Cohen, 1988]), com-
monsense reasoning (e.g., [Allen and Hayes, 1985]), diagnostic reasoning and expert sys-
tems (e.g., [Nökel, 1991; Brusoni et al., 1998]), reasoning about plans (e.g., [Allen, 1991a;
Tsang, 1986; Kautz, 1987; Kautz, 1991; Weida and Litman, 1992; Song and Cohen, 1996;
Yang, 1997]) and scheduling (e.g., [Rit, 1986]).

Qualitative temporal information can often be represented in terms of temporal con-
straints among point or interval variables over a linear, continuous and unbound time do-
main (e.g., the rational numbers). In the following we give an example from an imaginary
trains transportation domain, that will be used through the rest of the chapter to illustrate
the prominent approaches to reasoning about qualitative temporal information expressible as
binary temporal constraints.

Suppose that we want to represent the temporal information contained in the following
simple story (see Figure 8.1):∗

• during its travel from city C1 to city C2, train T1 stopped first at the station S1 and
then at station S2;

∗This is a revised and extended version of an example that we gave in [Gerevini, 1997].
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Figure 8.1: Pictorial description of the trains example

• train T2 traveled in the opposite direction of T1 (i.e., from C2 to C1);

• during its trip, T2 stopped first at S2 and then at S1;

• when T2 arrived at S1, T1 was stopping there too;

• T1 and T2 left S1 at different times;

• T1 arrived at C2 before T2 arrived at C1.

These sentences contain some explicit qualitative information about the ordering of the time
intervals during which the events described occurred. In particular:

• from the first sentence we can derive that the intervals of time during which T1 stopped
at S1 (at(T1,S1)) and at S2 (at(T1,S2)) are contained in the interval of time
during which T1 traveled from C1 to C2 (travel(T1,C1,C2));

• from the second sentence we can derive that at(T1,S1) is before at(T1,S2);

• from the third and the fourth sentences we can derive that at(T2,S1) and at(T2,S2)
are during travel(T2,C2,C1) and that at(T2,S2) is before at(T2,S1);

• from the fourth sentence we can derive that the starting time of at(T1,S1) precedes
the starting time of at(T2,S1) and that the starting time of at(T2,S1) precedes
the end time of at(T1,S1);

• from the fifth sentence we can derive that at(T1,S1) and at(T2,S1) cannot fin-
ish at the same time (i.e., that the end times of at(T1,S1) and at(T2,S1) are
different time points); and,

• finally, from the last sentence we can derive the constraint that the end time of
travel(T1,C1,C2) is before the end time of travel(T2,C2,C1).∗

Suppose that in addition we know that no more than one train can stop at S2 at the same
time (say, because it is a very small station). Then we also have that

• at(T2,S2) is disjoint from at(T1,S2).

∗Despite when T2 arrived at S1 T1 was still there, it is possible that T2 had to stay at S1 enough time to allow
T1 to arrive at C2 before the arrival of T2 at C1.
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Relation Inverse Meaning

I before (b) J J after (a) I I
J

I meets (m) J J met-by (mi) I I
J

I overlaps (o) J J overlapped-by (oi) I I
J

I during (d) J J contains (c) I I
J

I starts (s) J J started-by (si) I I
J

I finishes (f) J J finished-by (fi) I I
J

I equal (eq) J J equal I I
J

Figure 8.2: The thirteen basic relations of IA. IA contains 213 relations, each of
which is a disjunction of basic relations.

In terms of relations in Allen’s Interval Algebra (IA) [Allen, 1983] (see Figure 8.1), the
temporal information that we can derive from the story include the following constraints
(assertions of relations) in IA, where B is the set of all the thirteen basic relations:∗

(1) at(T1,S1) {during} travel(T1,C1,C2)

at(T1,S2) {during} travel(T1,C1,C2)

(2) at(T2,S1) {during} travel(T2,C2,C1)

at(T2,S2) {during} travel(T2,C2,C1)

(3) at(T1,S1) {before} at(T1,S2)

at(T2,S2) {before} at(T2,S1)

(4) at(T1,S1) {overlaps, contains, finished-by} at(T2,S1)

(5) at(T1,S1) B − {equal, finishes, finished-by} at(T2,S1)

(6) travel(T1,C1,C2) {before, meets, overlaps, starts, during}

travel(S2,C2,C1)

(7) at(T2,S2) {before, after} at(T1,S2)

A set of temporal constraints can be represented with a constraint network [Montanari,
1974], whose vertices represent interval (point) variables, and edges are labeled by the rela-
tions holding between these variables. Figure 8.3 gives a portion of the constraint network

∗We specify such constraints using the set notation. Each set of basic relations denotes the disjunction of the
relations in the set. E.g., I {before, after} J means (I before j) ∨ (I after j). Note, however, that when
we consider a set of constraints (assertions of relations), such a set should be interpreted as the conjunction of the
constraints forming it.
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B

{b}

{a}at(T2,S1) at(T2,S2)

at(T1,S1)

B

B
B

at(T1,S2)
{a}

{b}

{oi,d}{o,c} {b,a} {b,a}

Figure 8.3: A portion of the interval constraint network for the trains example.
Since the constraints between at(T2,S1) and at(T1,S2) are not explicit,
they are assumed to be the universal relation B.

representing the temporal information of the trains example formalized using relations in IA.
(The names of the relations are abbreviated using the notation introduced in Figure 8.1.)

By reasoning about the temporal constraints provided by the previous simple story, we
can determine that the story is temporally consistent; we can deduce new constraints that are
implicit in the story, such as that travel(T1,C1,C2) and travel(T2,C2,C1) must
have more than one common time point, i.e. that

travel(T1,C1,C2) B − {b, a, m, mi} travel(T2,C2,C1)

holds; we can strengthen explicit constraints (e.g., we deduce that at(T2,S2) must be
before at(T1,S2), ruling out the possibility that at(T2,S2) is after at(T1,S2), be-
cause at(T2,S2) {after} at(T1,S2) is not feasible); finally, we can determine that the
ordering and interpretation of the interval endpoints in Figure 8.4 is consistent with all the
(implicit and explicit) temporal constraints in the story.

Note that, if the supplementary information that T1 stopped at S2 before T2 were pro-
vided, then the story would be temporally inconsistent. This is because the explicit temporal
constraints in the story imply that T2 left S2 before T1 left S1, which precedes the arrival
of T1 at S2.

More in general, given a set of qualitative temporal constraints, fundamental reasoning
tasks include:

• Determining consistency (satisfiability) of the set.

• Finding a consistent scenario, i.e., an ordering of the temporal variables involved that
is consistent with the constraints provided, or a solution, i.e., an interpretation of all
the temporal variables involved that is consistent with the constraints provided.

• Deducing new constraints from those that are known and, in particular, computing the
strongest relation that is entailed by the input set of constraints between two particular
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Figure 8.4: A consistent ordering (scenario) and an interpretation (solution) for
the interval endpoints in the trains example.

variables, between one particular variable and all the others, or between every temporal
variable and every other variable.∗

Clearly, consistency checking and finding a solution (or a consistent scenario) are related
problems, since finding a solution (consistent scenario) for an input set of constraints de-
termines that the set is consistent. Finding a consistent scenario and finding a solution are
strictly related as well, since from a solution for the first problem we can easily derive a
solution for the second, and viceversa.

A solution for a set of constraints is also called a consistent instantiation of the vari-
ables involved, and an interval realization, if the variables are time intervals [Golumbic and
Shamir, 1993].

In the context of the constraint network representation, the problem of computing the
strongest entailed relations between all the pairs of variables corresponds to the problem
of computing the minimal network representation.† Figure 8.5 gives the minimal network
representation of the constraints in Figure 8.3.

The minimal network of an input set of constraints can be implemented as a matrix M,
where the entry M[i, j] is the strongest entailed relation between the ith-variable and the
jth-variable. Therefore, once we have the minimal network representation, we can derive
in constant time the strongest entailed relation between every temporal variable and every
other temporal variable.

In some alternative graph-based approaches, the task of computing the strongest entailed
relation between two particular variables v andw is sometimes called “querying” the relation
between the two vertices of the graph representing v and w. Here we will also call this task
“computing the one-to-one relation between v and w”. Finally, we will call the problem of

∗A relation R1 is stronger than a relation R2 if R1 implies R2 (e.g., “<” implies “≤”).
†Moreover, note that in the literature this problem is also called computing the “deductive closure” of the

constraints [Vilain et al., 1990], computing the “minimal labels” (between all pairs of intervals or points) [van
Beek, 1990], the “minimal labeling problem” [Golumbic and Shamir, 1993], and computing the “feasible [basic]
relations” [van Beek, 1992].
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{b}

{a}at(T2,S1) at(T2,S2)

at(T1,S1) at(T1,S2)

{a}{b}

R1

R3

R4

{oi,d}{o, c}
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R1={b,o,m,c,fi}

R2={a,oi,mi,d,f}

R3={b,o,m,d,s}

R4={a,oi,mi,di,si}

Figure 8.5: The minimal network of the constraint network in Figure 8.3

computing the strongest entailed relation between a (source) variable s and all the others
“computing the one-to-all relations for s”.

All these reasoning tasks are NP-hard if the assertions are in the Interval Algebra [Vilain
et al., 1990], while they can be solved in polynomial time if the assertions are in the Point Al-
gebra (PA) ([Ladkin and Maddux, 1988; Vilain et al., 1990; van Beek, 1990; van Beek, 1992;
Gerevini and Schubert, 1995b]), or in some subclasses of IA, such as Nebel and Bürckert’s
ORD-Horn algebra [Nebel and Bürckert, 1995].

Table 8.1 summarizes the computational complexity of the best algorithms, known at the
time of writing, for solving fundamental reasoning problems in the context of the following
classes of qualitative temporal relations: PA, PAc, SIA, SIAc, ORD-Horn, IA, and A3. PA
consists of eight relations between time points,<,≤, =,≥,>, 6=, ∅ (the empty relation) and
? (the universal relation); PAc is the (convex) subalgebra of PA containing all the relations of
PA except 6=; SIA consists of the set of relations in IA that can be translated into conjunctions
of relations in PA between the endpoints of the intervals [Ladkin and Maddux, 1988; van
Beek, 1990; van Beek and Cohen, 1990]; SIAc is the (convex) subalgebra of SIA formed by
the relations of IA that can be translated into conjunctions of relations in PAc; ORD-Horn
is the (unique) maximal tractable subclass of IA containing all the thirteen basic relations
[Nebel and Bürckert, 1995]; finally, A3 [Golumbic and Shamir, 1993] is a class of relations
formed by all the possible disjunctions of the following three interval relations: the basic
Allen’s relations before and after, and the IA relation intersect, which is defined as follows

intersect ≡ B− {before, after}.

In the next sections, we will describe the main techniques for processing qualitative
temporal constraints, including the algorithms concerning Table 8.1. We will consider the
constraint network approach as well as some other graph-based approaches. Section 8.2
concerns the relations in the Point Algebra; Section 8.3 concerns the relations in tractable
subclasses of the Interval Algebra; Section 8.4 concerns the relations of the full Interval
Algebra; finally, Section 8.5 gives the conclusions, and mention some issues that at the time
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Problem PAc/SIAc PA/SIA ORD-Horn IA A3

Consistency O(n2) O(n2) O(n3) exp exp
Consistent scenario O(n2) O(n2) O(n3) exp exp
Minimal network O(n3) O(n4) O(n5) exp exp
One-to-one relations O(n2) O(n2) O(n3) exp exp
One-to-all relations O(n2) O(n3) O(n4) exp exp

Table 8.1: Time complexity of the known best reasoning algorithms for
PAc/SIAc, PA/SIA, ORD-Horn, IA and A3, in terms of the number (n) of tem-
poral variables involved.“exp” means exponential.

of writing deserve further research.

8.2 Point Algebra Relations

The Point Algebra is a relation algebra [Tarski, 1941; Ladkin and Maddux, 1994; Hirsh,
1996] formed by three basic relations: <, > and =. The operations unary converse (denoted
by ·^), binary intersection (∩) and binary composition (◦) are defined as follows:

∀x, y : xR^y ↔ yRx
∀x, y : x(R ∩ S)y ↔ xRy ∧ xSy
∀x, y : x(R ◦ S)y ↔ ∃z : (xRz) ∧ (zSy).

Table 8.2 defines the relation resulting by composing two relations in PA. Any set (conjunc-
tion) of interval constraints in SIA can be translated into a set (conjunction) of constraints in
PA. For example, the interval constraints

at(T1,S1) {overlaps, contains, finished-by} at(T2,S1)
at(T1,S1) B − {equal, finishes, finished-by} at(T2,S1)

in the example given in the previous section can be translated into the following set of interval
endpoint constraints

{ at(T1,S1)− < at(T1,S1)+,
at(T2,S1)− < at(T2,S1)+,
at(T1,S1)− < at(T2,S1)−,
at(T2,S1)− < at(T1,S1)+,
at(T1,S1)+ 6= at(T2,S1)+ },

where at(T1,S1)− denotes the starting time of at(T1,S1), and at(T1,S1)+ denotes
the end time of at(T1,S1) (analogously for at(T2,S1)).

However, note that not all the constraints of the trains example can be translated into a
set of constraints in PA. In particular, in addition to the <-constraints ordering the endpoints
of the intervals involved, constraint (7) requires either a disjunction of constraints involving
four interval endpoints,
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◦ < > = ≤ ≥ 6= ?
< < ? < < ? ? ?
> ? > > ? > ? ?
= < > = ≤ ≥ 6= ?
≤ < ? ≤ ≤ ? ? ?
≥ ? > ≥ ? ≥ ? ?
6= ? ? 6= ? ? ? ?
? ? ? ? ? ? ? ?

Table 8.2: Composition table for PA relations

[at(T1,S2)+ < at(T2,S2)−] ∨ [at(T2,S2)+ < at(T1,S2)−],

or two disjunctions involving three interval endpoints each [Gerevini and Schubert, 1994b]:

[at(T1,S2)− < at(T2,S2)−] ∨ [at(T2,S2)+ < at(T1,S2)−],
[at(T2,S2)− < at(T1,S2)−] ∨ [at(T1,S2)+ < at(T2,S2)−].

Some techniques for handling such “non-pointizable” interval constraints will be considered
in Section 8.5.

8.2.1 Consistency Checking and Finding a Solution

The methods for finding a solution of a tractable set of qualitative constraints are typically
based on first determining the consistency of the set, and then, if the set turns out to be
consistent, using a technique for deriving a consistent scenario. A solution can be derived
from a consistent scenario in linear time by simply assigning to each variable a number
consistent with the order of the variables in the scenario.

Van Beek proposed a method for consistency checking and finding a consistent scenario
for a set of constraints in PA consisting of the following steps [van Beek, 1992]:

1. Represent the input set of constraints as a labeled directed graph, where the vertices
represent point variables, and each edge is labeled by the PA-relation of the constraint
between the variables represented by the vertices connected by the edge.

2. Compute the strongly connected components (SCC) of the graph as described in [Cor-
men et al., 1990], ignoring edges labeled “6=”. Then, check if any of the SCCs con-
tains a pair of vertices connected by an edge with label “<” or “6=”. The input set of
constraints is consistent if and only if such a SCC does not exist.

3. If the set of the input constraints is consistent, then collapse each SCC into an arbitrary
vertex v within that component. Such a vertex represents an equivalent class of point
variables (those corresponding to the vertices in the collapsed component).

4. Apply to the directed acyclic graph (DAG) obtained in the previous step an algorithm
for topologically sorting its vertices [Cormen et al., 1990], and use the resulting vertex
ordering as a consistent scenario for the input set of constraints.



8.2. POINT ALGEBRA RELATIONS 255

Both steps 1–2 (consistency checking) and steps 3–4 (finding a consistent scenario) can be
computed in O(n2) time and space. For more details, the interested reader may see [Tarjan,
1972; van Beek, 1990; Cormen et al., 1990; Gerevini and Schubert, 1994a].

8.2.2 Path Consistency and Minimal PA-networks

Path consistency is an important property for a set of constraints on which, as we will see,
some reasoning algorithms rely. Enforcing path consistency to a given set of constraints
corresponds to enforcing path consistency to its constraint network representation. This task
requires deriving a (possibly) new equivalent network in which, for every 3-vertex subnet-
work formed by vertices i, j, and k, the relationRik labeling the edge from i to k is stronger
than the composition of the relations Rij and Rjk labeling the edges from i to j, and from j
to k, respectively. I.e., in a path-consistent network we have that

∀i, j, k Rik ⊆ Rij ◦Rjk ,

where i, j and k are different vertices (variables) of the network. Two networks are equiv-
alent when the represented variables admit the same set of consistent interpretations (solu-
tions) in both the representations. Also, recall that the relations of PA (and of IA) form an
algebra, and hence they are closed under the operation of composition, as well as under the
operations of converse and intersection. For more details on the algebraic characterization
of PA and IA, the interested reader may consult [Tarski, 1941; Ladkin and Maddux, 1994;
Hirsh, 1996].

Several algorithms for enforcing path consistency are described in the literature on tem-
poral constraint satisfaction (e.g., [Allen, 1983; van Beek, 1992; Vilain et al., 1990; Ladkin
and Maddux, 1994; Bessière, 1996]). Typically these algorithms require O(n3) time on a
serial machine, where n is the number of temporal variables, while on parallel machines the
complexity of iterative local path consistency algorithms lies asymptotically between n2 and
n2log n [Ladkin and Maddux, 1988; Ladkin and Maddux, 1994]. Some path consistency
algorithms require O(n2) space, while others require O(n3) space.

Figure 8.2.2 gives a path consistency algorithm which is a variant of the algorithm given
by van Beek and Manchak in [van Beek and Manchak, 1996], which in turn is based on
Allen’s original algorithm for interval algebra relations [Allen, 1983]. Note that this is a
general algorithm that can be applied not only to point relations in PA, but also to the interval
relations in IA, as well as to other classes of binary qualitative relations, such as the spatial
relations of the Region Connection Calculus RCC-8 [Randell et al., 1992; Renz and Nebel,
1997; Gerevini and Renz, 1998].

The time complexity of this path consistency algorithm applied to a PA-network is
O(n3), where n is the number of the temporal variables; the space complexity is O(n2).
In order to derive from the input network C an equivalent path-consistent network, the algo-
rithm checks whether the following conditions hold (steps 9 and 17)

(a) Rik 6= Rik ∩ Rij ◦Rjk ,

(b) Rkj 6= Rkj ∩ Rki ◦Rij .

If (a) holds, then Rik is updated (strengthened), and the pair (i, k) is added to a list L to be
processed in turn, provided that (i, k) is not already on L. Similarly, if (b) holds, then Rkj
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Algorithm: PATH-CONSISTENCY(C)
Input: a n× n matrix C representing a network of constraints over n variables.
Output: either a path-consistent network equivalent to C or false.

1. L← {(i, j) | 1 ≤ i < j ≤ n}
2. while (L is not empty) do
3. select and delete an item (i, j) from L
4. for k ← 1 to n, k 6= i and k 6= j, do
5. t← Rik ∩ Rij ◦Rjk
6. if t is the empty relation then
7. return false
8. else
9. if t 6= Rik then
10. Rik ← t
11. Rki ←INVERSE(t)
12. L← L ∪ {(i, k)}
13. t← Rkj ∩ Rki ◦Rij
14. if t is the empty relation then
15. return false
16. else
17. if t 6= Rkj then
18. Rkj ← t
19. Rjk ←INVERSE(t)
20. L← L ∪ {(k, j)}
21. return C

Figure 8.6: A path consistency algorithm. Rij indicates the relation between
the i-th variable and the j-th variable which is stored as the entry C[i, j] of C.
The function INVERSE implements the unary operation inverse.

is updated (strengthened), and the pair (k, j) is added to L to be processed in turn, provided
that (k, j) is not already on L. The algorithm iterates until no more relations (labels on the
network edges) can be updated, or a relation is reduced to the empty relation. In the later
case the algorithm returns false (the network is inconsistent); in the former case, when the
algorithm terminates, it returns a path-consistent network equivalent to C.

Enforcing path consistency to a set of PA-constraints is a sound and complete method
for determining the consistency of the set [Ladkin and Maddux, 1988; Ladkin and Maddux,
1994]: the set is consistent if and only if a path consistency algorithm applied to the set does
not revise a relation to be the empty relation.

An interesting question is whether a path-consistent network of PA-constraints is also a
minimal network. The answer is positive only for constraints in PAc (i.e., the class containing
all the relations of PA except “6=”), while for constraints in PA this is not the case. This
is because a path-consistent network of PA constraints can contain subnetworks that are
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Figure 8.7: a) van Beek’s forbidden graph; b) and c) the two kinds of implicit
< relation in a TL-graph. Edges with no labels are assumed to be labeled “≤”.
Dotted arrows indicate paths, solid lines 6=-edges. In each of the graphs there is
an implicit < relation between v and w.

instances of a particular path-consistent PA-network that is not minimal. Such a subnetwork,
called “forbidden subgraph”, was identified by van Beek [van Beek, 1992] and it is depicted
in Figure 8.7.a). This network is not minimal because the relation “=” between v and w is
not feasible: there exists no solution for the set of constraints represented by the network in
which the variables v and w are interpreted as the same time point.

Gerevini and Schubert proved that any path-consistent network of constraints in PA that
contains no forbidden graphs is minimal [Gerevini and Schubert, 1995b].∗ Van Beek pro-
posed an algorithm based on this property for computing the minimal network of a set of
PA-constraints whose time complexity is O(n3 + m · n2), where m is number of input 6=-
constraints [van Beek, 1992] (which is O(n2)). This algorithm consists of two main steps:

• the first step computes a path-consistent network representing the input constraints,
which can be accomplished in O(n3) time;

• the second step identifies and reduces all the forbidden graphs that are present in the
path-consistent network. The time complexity of this step is O(m · n2).

It is worth noting that the forbidden subgraph can be seen as a special case of the “metric
forbidden graphs” identified by Gerevini and Cristani [Gerevini and Cristani, 1996] for the
class of constraints STP 6=, which subsumes PA and the class of metric constraints in Dechter,
Meiri and Pearl’s STP framework [Dechter et al., 1991].

8.2.3 One-to-all Relations for PA

Figure 8.8 gives the algorithm proposed by van Beek and Cohen for computing one-to-
all relations (OAC). The input of OAC is a matrix C representing a consistent network of
constraints, and a vertex (a temporal variable) s of the network; the output is C with the
constraints between s and every other variable (possibly) revised.

∗This was first claimed (without a correct proof) by van Beek and Cohen in [van Beek and Cohen, 1990].
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Algorithm: OAC(s, C)
Input: a source vertex s and a consistent constraints network stored in C
Output: C revised to compute one-to-all relations for s

1. L← V − {s} (V is the set of the vertices in the network)
2. while (L is not empty) do
3. select and delete a vertex v from L s.t. the cost of Rsv is minimum
4. for t in V do
5. l← Rst ∩Rsv ◦Rvt
6. if l 6= Rst then
7. Rst ← l
8. L← L ∪ {t}
9. return C

Figure 8.8: Van Beek and Cohen’s algorithm for computing one-to-all relations.

Algorithm: OAC-2(s, C)
Input: a source vertex s and a consistent constraint network stored in C
Output: C revised to compute one-to-all relations for s

1. for each relation Rsi (1 ≤ i ≤ n, i 6= s) do
2. for each basic relation r in Rsi do
3. t← Rsi
4. Rsi ← r
5. if C is not consistent then
6. Rsi = Rsi − {r}
7. else Rsi = t
8. return C

Figure 8.9: A cubic time algorithm for computing one-to-all relations for a (consistent) set
of constraints in PA.

OAC takes O(n2) time and is an adaptation of Dijkstra’s algorithm for computing the
shortest path from a single source vertex to every other vertex [Cormen et al., 1990]. The
algorithm maintains a list of vertices that are processed following an order determined by
the “costs” of the relative relation with the source vertex. In principle, these costs can be
arbitrarily defined without affecting the worst-case time complexity of the algorithm. How-
ever, in practice the order in which the vertices are selected from the list can significantly
affect the number of iterations performed by the algorithm. Van Beek and Cohen proposed
a weighting scheme for computing the costs of the relations which halves the number of
iterations of the algorithm, compared with the number of iterations determined by a random
choice of the next vertex to be processed. (For more details the interested reader may see
[van Beek and Cohen, 1990].)

Unfortunately, while the previous algorithm is complete for constraints in PAc, it is not
complete for constraints in PA [van Beek and Cohen, 1990]. It appears then that the (current)
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best method for computing one-to-all constraints for PA is based on independently checking
the feasibility of each of the basic relations between the source variable (vertex) and every
other variable (vertex). This algorithm is given in Figure 8.9. It is easy to see that the algo-
rithm is correct and complete for the full PA, and that, since it performs O(n) consistency
checks (each of which requires O(n2) time – see Section 8.2.1), the time complexity of the
algorithm is O(n3).

8.2.4 Efficient Graph-based Approaches

The techniques based on the constraint network representation are often elegant, simple to
understand and easy to implement. On the other hand, their computational costs (both in
time and space) can be inadequate for applications in which efficient temporal reasoning is
an important issue.

Some alternative approaches based on graph algorithms have been proposed with the
aim of addressing scalability, and supporting efficient reasoning for large data sets. Such
techniques are especially suitable for managing “sparse” temporal data bases, i.e., sets of
PA-constraints whose size is significantly lower than (n2 − n)/2, where n is the number of
the temporal variables involved.

Currently, the most effective of these graph-based methods are the approaches using
ranked temporally labeled graphs [Gerevini and Schubert, 1995a; Delgrande et al., 2001],
timegraphs [Miller and Schubert, 1990; Gerevini and Schubert, 1995a], or series-parallel
graphs [Delgrande and Gupta, 1996; Delgrande et al., 2001]. In the following we will
give a general overview of each of them. Another important related method is Ghallab
and Mounir Alaoui’s indexed time table [Ghallab and Mounir Alaoui, 1989]. However,
this approach is incomplete for the full Point Algebra, because it can not detect some <-
constraints that are implied via 6=-constraint [Gerevini and Schubert, 1995a]. Moreover, as
claimed in [Delgrande et al., 2001], the general idea underlying Ghallab and Mounir Alaoui’s
method seems subsumed by a variant of the approach based on series-parallel graphs.

In a graph-based approach, instead of precomputing all the constraints that are implicit in
the set of input constraints (i.e., computing their minimal network representation), we build
a graph representation with some particular data structures that support efficient deduction
of constraints at query time. In two of the three approaches that we consider here, temporal
information is partitioned into a set of specialized graph representations (either chains or
series-parallel graphs [Valdes et al., 1982]), that are connected by a metagraph data structure.
Queries involving variables within the same specialized representation can be answered in
constant time by using special purpose algorithms, while in the general case they require a
search on the metagraph.

The time chain representation is particularly suitable for story comprehension and plan-
ning applications [Miller and Schubert, 1990; Gerevini and Schubert, 1995a]; the series-
parallel graph representation can be used, for instance, to model the qualitative temporal
evolution of process execution [Delgrande et al., 2001].

Experimental results conducted using TimeGraph-II, a temporal reasoning system based
on timegraphs [Gerevini et al., 1995], show that building a timegraph can be much faster than
computing the minimal network representation [Gerevini and Schubert, 1995a]. Moreover,
for domains that exhibit structure, in terms of time chains or series-parallel graphs, querying
the strongest entailed relations is very efficient [Gerevini and Schubert, 1995a; Delgrande et
al., 2001].
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Figure 8.10: An example of TL-graph with ranks. Edges with no label are
assumed to be labeled “≤”.

Ranked Temporally Labeled Graphs

A temporally labeled graph (TL-graph) is a graph with at least one vertex and a set of labeled
edges, where each edge (v, l, w) connects a pair of distinct vertices v, w. The edges are either
directed and labeled ≤ or <, or undirected and labeled 6=.

Every vertex of a TL-graph has at least one name attached to it, and if a vertex has more
than one name, then they are alternative names for the same time point. The name sets of
any two vertices are required to be disjoint. Figure 8.10 shows an example of TL-graph. A
path in a TL-graph is called a ≤-path if each edge on the path has label < or ≤. A ≤-path is
called a <-path if at least one of the edges has label <.

A TL-graph G contains an implicit < relation between two vertices v1, v2 when the
strongest relation entailed by the set of constraints from which G has been built is v1 < v2
and there is no <-path from v1 to v2 in G. Figures 8.7.b) and 8.7.c) show the two possi-
ble TL-graphs which give rise to an implicit < relation. All TL-graphs with an implicit <
relation contain one of these graphs as subgraph.

An acyclic TL-graph without implicit < relations is an explicit TL-graph. In order to
make explicit a TL-graph containing implicit < relations, we can add new edges with label
< [Gerevini and Schubert, 1995a]. For example, in Figure 8.7 we add the edge (v,<,w) to
the graph. An important property of an explicit TL-graph is that it entails v ≤ w if and only
if there is a ≤-path from v to w; it entails v < w if and only if there is a <-path from v to w,
and it entails v 6= w if and only if there is a <-path from v to w or from w to v, or there is
an edge (v, 6=, w).

Given a set S of c PA-constraints, clearly we can construct a TL-graph G representing S
in O(c) time. In order to check consistency of S and transform G into an equivalent acyclic
TL-graph, we can use van Beek’s method for PA (see Section 8.2.1). If the TL-graph is
consistent, each SCC is collapsed into an arbitrary vertex v within that component. All the
cross-component edges entering or leaving the component are transferred to v.∗ The edges
within the component are eliminated and a supplementary set of alternative names for v is
generated.

∗When there is more than one edge from different collapsed vertices to the same vertex z that is not collapsed,
the label on the edge from x to z is the intersection of the labels on these edges and the label on the current edge
from x to z (if any). Similarly for multiple edges from the same vertex z to different collapsed vertices.
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In order to query the strongest relation between two variables (vertices) of a TL-graph ,
there are two possibilities depending on whether (a) we preprocess all 6=-relations to make
implicit <-relations explicit before querying, or (b) we identify implicit <-relations by han-
dling 6=-relations at query time, using a more elaborated query algorithm [Delgrande et al.,
2001]. For generic TL-graphs, option (b) seems more appropriate than (a), because mak-
ing implicit < relations explicit can be significantly expensive (it requires O(m · n2) time,
where m is the number of input 6=-constraints and n the number of the temporal variables).
However, as we will briefly discuss in the next section, for a TL-graph that is suitable for the
timegraph representation, making < relations explicit can be much faster.

Let G be a TL-graph with e edges representing a set S of c PA-constraints with no 6=-
constraint (e ≤ m). The strongest entailed relation R between two variables v1 and v2
in S can be determined in O(e) time by two main steps: (1) check whether v1 and v2 are
represented by the same vertex of G (in such a case R is “=”); if this is not the case, then
(2) search for a <-path between the vertices representing v1 and v2 (or for a ≤-path, if there
is no <-path). Such a search can be accomplished, for instance, by using the single-source-
longest-paths algorithm given in [Cormen et al., 1990].

When S contains 6=-constraints, and they pre-processed to make the TL-graph represent-
ing S explicit, the query algorithm is the same as above, except for the following addition:
if the graph contains an 6=-edge between v1 and v2, then R is “6=”. Alternatively, if the
TL-graph is not made explicit before querying, we can handle 6=-constraints as proposed in
[Delgrande et al., 2001]. During the search for a path from v1 to v2, we identify the set
V≤ = {w | v1 ≤ w, w ≤ v2} by making the vertices of the graph according to whether
they lie on a ≤-path from v1 to v2. (Similarly when searching for a path from v2 to v1.)
If x 6= y ∈ S and x, y ∈ V≤ ∪ {v1, v2}, then the TL-graph entails v1 < v2. The time
complexity of the resulting query procedure is linear with respect to the number of the input
constraints.

A ranked TL-graph is a simple but powerful extension of an acyclic TL-graph. In a
ranked TL-graph, each vertex (time point) has a rank associated with it. The rank of a ver-
tex v can be defined as the length of the longest ≤-paths to v from a source vertex s of the
TL-graph representing the “universal start time”, times a distance increment k [Ghallab and
Mounir Alaoui, 1989; Gerevini and Schubert, 1995a]. s is a special vertex with no predeces-
sor and whose successors are the vertices of the graph that have no other predecessor. The
ranks for an acyclic TL-graph can be computed in O(n + e) time using a slight adaptation
of the DAG-longest-paths algorithm [Cormen et al., 1990].

The use of the ranks can significantly speed up the search for a path from a vertex p to
another vertex q: the search can be pruned whenever a vertex with a rank greater than or
equal to the rank of q is reached. For instance, during the search of a path from a to g in
the ranked TL-graph of Figure 8.10, when we reach vertex c, we can prune the search from
this vertex, because the ranks if its successors are greater than the rank of g. Thus, it suffices
to visit at most three nodes (i, c and b) before reaching g from a. The advantage of using
ranks to prune the search at query time has been empirically demonstrated in [Delgrande et
al., 2001].

The experimental analysis in [Delgrande et al., 2001] indicates that the use of a ranked
TL-graph is the best approach when the graph is sparse and temporal information does not
exhibit structure that can be “encapsulated” into specialized graph representations, like time
chains or series-parallel graphs.
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Figure 8.11: The timegraph of the TL-graph of Figure 8.10, with transitive
edges and auxiliary edges omitted. Edges with no label are assumed to be la-
beled “≤”.

Timegraphs

A timegraph is an acyclic TL-graph partitioned into a set of time chains, such that each ver-
tex is on one and only one time chain. A time chain is a ≤-path, plus possibly transitive
edges connecting pairs of vertices on the ≤-path. Distinct chains of a timegraph can be con-
nected by cross-chain edges. Vertices connected by cross-chain edges are called metaver-
tices. Cross-chain edges and certain auxiliary edges connecting metavertices on the same
chain are called metaedges. The metavertices and metaedges of a timegraph T form the
metagraph of T .

Figure 8.11 shows the timegraph built from the TL-graph of Figure 8.10. All vertices
except d and e are metavertices. The edges connecting vertices a to i, i to c, b to g, h with f ,
are metaedges. Dotted edges are special links called nextgreaters that are computed during
the construction of the timegraph and that indicate for each vertex v the nearest descendant
v′ of v on the same chain as v such that the graph entails v < v′.

As in a ranked TL-graph, each vertex (time point) in a timegraph has rank associated
with it. The main purpose of the ranks is to allow the computation of the strongest relation
entailed by the timegraph between two vertices on the same chain in constant time. In fact,
given two vertices v1 and v2 on the same chain such that the rank of v2 is greater than the
rank of v1, if the rank of the nextgreater of v1 is lower that the rank of v2, then the timegraph
entails v1 < v2, otherwise it entails v1 ≤ v2. For example, the timegraph of Figure 8.11
entails a < d because a and d are on the same chain, and the rank of the nextgreater of a is
lower than the rank of d.

In general, the ranks in a timegraph are very useful to speed up path search both during
the construction of the timegraph and at query time.

Given a set S of constraints in PA, in order to build a timegraph representation of S, we
start from a TL-graph G representing S. The construction of the timegraph from G consists
of four main steps: consistency checking, ranking of the graph (assigning to each vertex a
rank), formation of the chains of the metagraph, and making explicit the implicit< relations.

We have already described the first two steps in Section 8.2.4. The third step, the for-
mation of the chains, consists of partitioning the TL-graph into a set of time chains (≤-
paths), deriving from this partition the metagraph and doing a first-pass computation of the
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nextgreater links. The first two subtasks take time linear in n + e, while the last may re-
quire an O(ê) metagraph search for each of the n̂ metavertices, where ê is the number of
cross-chain edges in the timegraph.

The fourth step, making explicit all the implicit < relations, can be the most expensive
task in the construction of a timegraph. This is the same as in van Beek’s approach for
eliminating the forbidden graphs in a path-consistent network of PA-constraints (see Section
8.2.2). However, the data structures provided by a timegraph allow us to accomplish this
task more efficiently in practice. A final operation is the revision of nextgreater links, to take
account of any implicit < relations made explicit by the fourth step.

Figures 8.7.b) and 8.7.c) show the two cases of implicit< relations. The time complexity
of the algorithm for handling the first case in the timegraph approach isO(ê 6= ·(ê+n̂)), where
ê 6= is the number of cross-chain edges with label 6=.

In order to make implicit < relations of the second kind (Figure 8.7.c) explicit, and
removing redundant 6=-edges, a number of 6= diamonds of the order of e 6= · n2 may need
to be identified in the worst case, where e 6= is the number of edges labeled “6=” in the TL-
graph. However, for timegraphs only a subset of these needs to be considered. In fact it is
possible to limit the search to the smallest 6= diamonds, i.e., the set of diamonds obtained
by considering for each edge (v, 6=, w) only the nearest common descendants of v and w
(NCD(v, w)) and their nearest common ancestors (NCA(v, w)). This is a consequence of
the fact that, once we have inserted a < edge from each vertex in NCA(v, w) to each vertex
in NCD(v, w), we will have explicit<-paths for all pairs of “diamond-connected” vertices.
Overall, the worst-case time complexity of the fourth step is O(ê 6= · (ê+ n̂)).

Regarding querying the strongest entailed relations between two vertices (time points)
p1 and p2 in a timegraph, there are four cases in which this can be accomplished in constant
time. The first case is the one where p1 and p2 are alternative names of the same point. The
second case is the one where the vertices v1 and v2 corresponding to p1 and p2 are on the
same time chain. The third case is the one where v1 and v2 are not on the same chain and
have the same rank, and there is no 6= edge between them (the strongest entailed relation is
?). The fourth case is the one where p1 and p2 are connected by a 6=-edge (the strongest
entailed relation is 6=).

In the remaining cases an explicit search of the graph needs to be performed. If there
exists at least one <-path from v1 to v2, then the answer is v1 < v2. If there are only ≤-
paths (but no<-paths) from v1 to v2, then the answer is v1 ≤ v2. (Analogously for the paths
from v2 to v1.) Such a graph search can be accomplished in O(h + ê+ n̂) time, where h is
the constant corresponding to the time required by the four special cases.

Series-Parallel Graphs

In this section we describe Delgrande and Gupta’s SPMG approach based on structuring
temporal information into series-parallel graphs [Valdes et al., 1982]. A series-parallel
graph (SP-graph) is a DAG with one source s and one sink t, defined inductively as follows
[Valdes et al., 1982; Delgrande et al., 2001]:

• Base case. A single edge (s, t) from s to t is a series-parallel graph with source s and
sink t.

• Inductive case. Let G1 and G2 be series-parallel graphs with source and sink s1, t1
and s2, t2, respectively, such that the sets of vertices of G1 and G2 are disjoint. Then,
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Figure 8.12: An example of an SP-graph with its decomposition tree. Edges
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• Series step. The graph constructed by taking the disjoint union of G1 and G2 and
identifying s2 with t1 is a series-parallel graph with source s1 and sink t2 constructed
using a series step.

• Parallel step. The graph constructed by taking the disjoint union of G1 and G2 and
identifying s1 with s2 (call this vertex s) and t1 with t2 (call this vertex t) is a series-
parallel graph with source s and sink t constructed using a parallel step.

In SPMG, each edge of a SP-graph is labeled either < or ≤, and represents either a <-
constraint or a≤-constraints, respectively (6=-constraints are not explicitly represented in the
graph). Moreover, in any SP-graph G with e edges and n vertices, we have e ≤ 2n. Figure
8.12 gives an example of a simple SP-graph, together with its decomposition tree. Any SP-
graphG can be decomposed into the decomposition tree of G, that is implicitly given by the
definition of SP-graph. Internal nodes of the tree are labeled “series” or “parallel”, while leaf
nodes are labeled by edges of G. The decomposition tree of a SP-graph can be computed in
linear time [Valdes et al., 1982].

Using the decomposition tree of a SP-graph G, SPMG efficiently “compiles” G to derive
some information supporting constant time queries on G. This processing requires O(n)
time, and consists of two main steps: computing a planar embedding of G, and computing
the functions S and A for the vertices of G. A planar embedding of G is an assignment to
each vertex v of a co-ordinate (xv , yv) on the integer plan such that, for any other vertex w,
there is a path from v to w if and only if xv < xw and yv < yw. Figure 8.13 shows an
example of planar embedding. In this example, since the co-ordinates of a are both lower
than the corresponding co-ordinates of t, we can derive that there is a ≤-path from a to t.

By using the planar embedding, we can answer queries of type ≤ in constant time, but
we cannot answer queries of type <, because the planar embedding does not distinguish <-
paths and≤-paths in the SP-graph. The S andA functions ofG have this purpose: given two
vertices x, y such that in G there is a ≤-path from x to y, we have that G contains a <-path
from x to y if and only if A(x) < S(w). For example, since in Figure 8.13 A(a) < S(t),
the SP-graph under consideration has a <-path from a to t, entailing a < t.
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Figure 8.13: A planar embedding and the S,A values for the SP-graph of Figure 8.12.

For every vertex v ofG, S(v) is defined as the maximum number of<-edges on any path
from the source vertex of G to v, while A(v) is defined as follows. If v is the sink of G or
there exists a vertexw such thatG has an <-edge from v to w, thenA(v) = S(v); otherwise
A(v) is the minimum value over values in the set {A(w) | G contains a ≤-edge from v to
w}. Figure 8.13 gives an example of S and A.

Given a (consistent) acyclic TL-graph G, SPMG constructs a series-parallel metagraph
(SP-metagraph) G′ for G as follows. First G is partitioned into a set of maximal series-
parallel subgraphs, and each of these SP-graphs is collapsed into a single metaedge of G′.
A metaedge from u to v represents a SP-graph with source u and vertex v, and its label is
the intersection of the labels of all paths from u to l in G. Any 6=-edge in G connecting two
vertices x, y in the same SP-subgraph may be replaced with a <-edge (if there is a path from
x to y); otherwise the edge is a 6=-metaedge of the metagraph.

Then, each metaedge in the metagraph thus derived, is processed to compute a planar
embedding for the corresponding SP-graph and its A and S functions. This allows SPMG

to answer queries involving vertices “inside” the same metaedge in constant time. In order
to answer queries between vertices of the metagraph, SPMG uses a path-search algorithm
that, like in TL-graphs and timegraphs, can exploit ranks for pruning the search. The time
complexity of such an algorithm is linear in the number of vertices and edges forming the
metagraph. 6=-edges are handled at query time, as described for TL-graphs. To compute the
strongest entailed relation between two vertices that are internal to two different metaedges,
SPMG combines path-search on the metagraph and lookup inside the two SP-graphs associ-
ated with the metaedges. For more details on constructing and querying a SP-metagraph, the
interested reader may see [Delgrande et al., 2001].

An experimental analysis conducted in [Delgrande et al., 2001] shows that SPMG is
very efficient for sparse TL-graphs that are suited for being compiled into SP-metagraph
representation. Furthermore, the performance of SPMG degrades gracefully for the randomly
generated (without forcing any structure) data sets considered in the experimental analysis.

8.3 Tractable Interval Algebra Relations

IA is a relation algebra [Tarski, 1941; Ladkin and Maddux, 1994; Hirsh, 1996] in which
the operators converse, intersection and compositions are defined as we have described for
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PA in Section 8.2. In the context of IA, the main reasoning tasks are intractable. However,
several tractable subclasses of IA have been identified. Among them, the most studied in
terms of algorithm design are the convex simple interval algebra (SIAc), the simple interval
algebra (SIA) and the ORD-Horn algebra. In terms of the set of relations contained in these
subalgebras of IA, we have that

SIAc ⊂ SIA ⊂ ORD-Horn.

ORD-Horn is a maximal tractable subclass of IA formed by the relations in IA that can be
translated into conjunctions of (at most binary) disjunctions of interval endpoint constraints
in {≤,=, 6=} (or simply in {≤, 6=}, given that any =-constraint can be expressed by two ≤-
constraints), where at most one disjunct (PA-constraint) is of type “=” or “≤”. For example,
the IA-constraint

I B− {starts} J

can be translated into the following set of constraints between of I and J :

{I− < I+, J− < J+, I− 6= J− ∨ J+ ≤ I+},

where I− and I+ are the starting point and the end point of I , respectively (analogously for
J− and J+).

Other maximal tractable subclasses of IA have been identified [Drakengren and Jonsson,
1997b; Krokhin et al., 2003]. However, such classes are probably less interesting than ORD-
Horn, because they do not contain all the basic relations of IA, and hence they cannot express
definite information about the ordering of two temporal intervals. (For more details on these
classes, the interested reader may see the chapter on computational complexity of temporal
constraint problems in this book).

Finally, Golumbic and Shamir studied some interesting tractable subclasses of IA, which
are restrictions of the set of relations forming the intractable classA3 [Golumbic and Shamir,
1993]. In particular, they show that, for some of these tractable subclasses, the problem of de-
ciding consistency is equivalent to some well-known polynomial graph-theoretic problems;
while for the other tractable subclasses they present new polynomial graph-based techniques.
Golumbic and Shamir illustrate also some interesting applications of temporal reasoning in-
volving their classes of relations.

In the rest of this section we will focus on the main techniques for processing constraints
in SIAc, SIA and ORD-Horn.

8.3.1 Consistency Checking and Finding a Solution

Consistency checking (finding a consistent scenario/solution) for a set of constraints in
SIAc and SIA can be easily reduced to consistency checking (finding a consistent sce-
nario/solution) for an equivalent set of constraints in PAc and PA respectively. Hence, these
tasks can be performed by using the method described in Section 8.2.1, which requiresO(n2)
time.

Concerning ORD-Horn constraints, it has been proved that path consistency guarantees
consistency [Nebel and Bürckert, 1995]: given a set Ω of constraints in ORD-Horn, the path
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Table 8.3: Allen’s composition table for IA (the basic relation “eq” is omitted).
The composition of eq and any basic relation r is r.

consistency algorithm of Figure 8.2.2 is a complete procedure for deciding the consistency
of Ω in cubic time.∗

Other path consistency algorithms for processing IA-constraints have been proposed in
the temporal reasoning literature. For a comparison of some of the most representative see
[Bessière, 1996].

In practice, the efficiency of a path consistency algorithm applied to a set of constraints
in IA may significantly depend on the time spent for constraint composition. Allen [Allen,
1983] originally proposed calculating the 213 × 213 possible compositions of IA-relations
dynamically, using a table storing the 13× 13 compositions of the basic relations of IA (see
Table 8.3). The composition of two arbitrary relations R1 and R2 in IA is the union of all
the compositions ri ◦ rj , such that ri and rj are basic relations in R1 and R2, respectively.

Other significantly improved methods have been proposed since then by Hogge [Hogge,
1987] and by Ladkin and Reinefeld [Ladkin and Reinefeld, 1997]. Ladkin and Reinefeld
showed that their method of storing all the possible compositions in a table (requiring about
64 megabytes of memory) is much faster than any alternative previously proposed.

Van Beek and Manchak [van Beek and Manchak, 1996] studied other efficiency improve-
ments for a path consistency algorithm applied to a set of IA-constraints obtained by using
some techniques that reduce the number of composition operations to be performed, or by
using particular heuristics for ordering the constraints to be processed (e.g., the pairs on the
list L of the algorithm in Figure 8.2.2). Finally, another useful technique for improving path
consistency processing in IA-networks is presented by Bessière in [Bessière, 1996].

Concerning the problem of finding a scenario/solution for a set of ORD-Horn constraints,

∗We have introduced this algorithm in the context of PA, but the same algorithm can be used also for constraints
in IA. Of course, for IA-constraints the algorithm uses a different composition table and a different INVERSE

function.
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two different approaches have been proposed. Given a path consistent set Ω involving vari-
ables x1, . . . , xn, Ligozat proved that we can find a solution for Ω in the following way
[Ligozat, 1996]: iteratively choose instantiations of xi, for 1 ≤ i ≤ n, in such a way that
for each i, the interval assigned to xi has the maximal number of endpoints distinct from
the endpoints of the intervals assigned to xk, k = 1, . . . i − 1, allowed by the constraints
between xi and xk . Operatively, from this result we can derive the following simple method
for finding a scenario: iteratively refine the relation R of a constraint xRy to a basic relation
among those in R, preferring relations that impose a maximal number of different endpoints
for x and y; each time a relation is refined, we enforce path-consistency to the resulting set
of constraints. Each refinement transforms the network to a tighter equivalent network, and
the method is guaranteed to be backtrack free.∗ Although Ligozat in his paper does not give
a complexity analysis, it can be proved that his method takes O(n3) time [Bessière, 1997;
Gerevini, 2003a].

The second method was proposed by Gerevini and Cristani [Gerevini and Cristani, 1997].
Their technique is based on deriving form a path-consistent set Ω of constraints in ORD-
Horn a particular set Σ of constraints over PA involving the endpoints of the interval vari-
ables inΩ. From a consistent scenario (solution) forΣ we can then easily derive a consistent
scenario (solution) for Ω. The time complexity of this method is O(n2), if the input set of
constraints is known to be path-consistent, while in the general case it is O(n3), because
before applying the method we need to process Ω with a path consistency algorithm.

8.3.2 Minimal Network and One-to-all Relations

A path-consistent network of constraints over SIAc is minimal [Vilain and Kautz, 1986;
Vilain et al., 1990]. However, path consistency is not sufficient to ensure minimality when
the constraints of the set are in SIA, and thus neither when they are in ORD-Horn, which is
a superclass of SIA.†

Regarding ORD-Horn, Bessière, Isli and Ligozat proved that path consistency is suf-
ficient to compute the minimal network representation for two subclasses of ORD-Horn,
one of which covers more than 60% of the relations in ORD-Horn [Bessière et al., 1996].
Actually, their results in [Bessière et al., 1996] are stronger than this. They show that, for
these subclasses of ORD-Horn, path consistency ensures global consistency [Dechter, 1992].
A globally consistent set of constraints implies that its constraint network is minimal and,
furthermore, that a consistent scenario/solution can be found in a backtrack free manner
[Dechter, 1992].

The minimal network representation for a set S of constraints in SIA can be computed
in three main steps:

1. Translate S into an equivalent set S ′ of interval endpoint constraints over PA;

2. Compute the minimal network representation of S ′ by using the method described in
Section 8.2.2;

3. Translate the resulting PA-constraints back into the corresponding interval constraints
over SIA.

∗A constraint network N is tighter than another equivalent network N ′ when every constraint represented by
N is stronger than the corresponding constraint ofN ′.

†An example of path-consistent set of constraints in IA that is not minimal is given in [Allen, 1983].
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The time complexity of this procedure is dominated by step 2, which takes O(n3 +m · n2)
time (see Section 8.2.2).

Unfortunately, this method cannot be applied to a set Ω of constraints over ORD-Horn,
because the translation ofΩ can include disjunctions of PA-constraints. It appears that at the
time of writing the following simple method, based on solving a set of consistency checking
instances, is the most efficient way for computing the minimal network of Ω (in terms of
worst-case time complexity).

Minimal Network Representation for ORD-Horn. For each basic relation r ∈ R involved
in each constraint xRy of Ω, we refine xRy to xry and we check the consistency of the
resulting set Ω′. r belongs to the relation of the constraint between x and y in the minimal
network of Ω if and only if Ω′ is consistent.

Since this method performs O(n2) consistency checks, it is clear that its worst-case time
complexity is O(n5). It has been conjectured that this is the best that we can do for ORD-
Horn [Nebel and Bürckert, 1995] (in terms of worst-case complexity), and it appears that at
the time of writing no proof exists for this claim yet.

Concerning the problem of computing one-to-all relations, the algorithm OAC that we
have presented in the context of PA (see Figure 8.8) is complete for SIAc, but it is incomplete
for SIA.

When the input constraints belong to SIA, or to a larger class, the problem of computing
one-to-all relations can be solved by using the algorithm OAC-2 (see Figure 8.9). It is easy
to see that, since consistency checking for a set of constraints in SIA can be accomplished
in O(n2) time, OAC-2 applied to a set of SIA-constraints requires O(n3) time. Similarly,
OAC-2 applied to a set of ORD-Horn constraints requires O(n4) time, because consistency
checking requires O(n3) time.

Finally, in Section 8.4.2 we will consider an extension of the timegraph approach called
disjunctive timegraphs. This extension adds a great deal of expressiveness power, including
the ability to represent constraints in ORD-Horn. A disjunctive timegraph representing a
set of constraints in ORD-Horn can be polynomially processed for solving the problems of
consistency checking, finding a scenario/solution and computing one-to-one relations.

8.4 Intractable Interval Algebra Relations

In this section we present some techniques for processing intractable classes of IA-relations,
i.e., classes for which the main reasoning problems are NP-hard, and hence that cannot be
solved in polynomial time (assuming P 6= NP).

The ORD-Horn class, though computationally attractive, is not practically adequate for
all AI applications because it does not contain disjointness relations such as before or after,
which are important in planning and scheduling. Figure 8.14 gives a list of the disjointness
relations in IA, together with their translation in terms of PA-constraints between interval
endpoints.

For example, these relations can be useful to express the constraint that some planned ac-
tions cannot be scheduled concurrently, because they contend for the same resources (agents,
vehicles, tools, pathways, and so on). In the context of the trains example given in Section
8.1, the constraint
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I {before,after} J
I {before,met-by} J
I {meets,after} J
I {meets,met-by} J
I {before,after,meets} J
I {before,after,met-by} J
I {before,meets,met-by} J
I {meets,after,met-by} J
I {before,after,meets,met-by} J

⇔
⇔
⇔
⇔
⇔
⇔
⇔
⇔
⇔

I+ < J− ∨ J+ < I−

I+ < J− ∨ J+ = I−

I+ = J− ∨ J+ < I−

I+ = J− ∨ J+ = I−

I+ ≤ J− ∨ J+ < I−

I+ < J− ∨ J+ ≤ I−

I+ ≤ J− ∨ J + = I−

I+ = J− ∨ J+ ≤ I−

I+ ≤ J− ∨ J+ ≤ I−

Figure 8.14: The nine disjointness relations of IA and the corresponding transla-
tion into disjunctions of PA-constraints between interval endpoints. (The com-
plete translation of each interval relation between I and J into a set of point
relations also contains the endpoint constraints I− < I+ and J− < J+.)

at(T2, S2) {before, after} at(T1, S2),

which is used to express the information that two trains cannot stop at station S2 at the
same time, cannot be expressed using only ORD-Horn relations. Moreover, as indicated in
[Gerevini and Schubert, 1994b], reasoning about disjoint actions or events is important also
in natural language understanding. Finally, Golumbic and Shamir [Golumbic and Shamir,
1993] discuss an application of reasoning about interval relations to a problem in molecular
biology, where disjointness relations are used to express that some pairs of segments of DNA
are disjoint [Benzen, 1959].

Unfortunately, adding any of the disjunctive relation of Figure 8.14 to ORD-Horn (as
well as to SIA, SIAc and to the simple class formed by only the thirteen relations of IA)
leads to intractability.∗

In general, the problem of deciding the satisfiability of a set of constraints in IA (called
ISAT for IA in [Golumbic and Shamir, 1993]) is NP-complete [Vilain and Kautz, 1986;
Vilain et al., 1990]. The hard to solve instances of ISAT for IA appear around a phase
transition concerning the probability of satisfiability that was identified and investigated by
Ladkin and Reinefeld [Ladkin and Reinefeld, 1992] and by Nebel [Nebel, 1997].

A phase transition is characterized by some critical values of certain order parameters of
the problem space [Cheeseman et al., 1991]. Specifically, Ladkin and Reinefeld observed a
phase transition of ISAT for IA in the range 6 ≤ q×n ≤ 15 for q ≥ 0.5, where q is the ratio
of non-universal constraints (i.e., those different from the disjunction of all the thirteen basic
relations), and n is the number of the interval variables involved in the constraints.

Nebel characterized the phase transition in terms of the average degree (d) of the con-
straint network representing the input set of constraints. For example, when the average
number of basic relations forming a constraint (i.e., its “label size”) is 6.5, the phase transi-
tion shown in Figure 8.4 is centered in d = 9.5. (For more details, the interested reader may

∗It should be noted that there exist some tractable classes containing {before, after} [Krokhin et al., 2003;
Golumbic and Shamir, 1993]. However, these classes do not contain all the basic relations of IA, and hence they
are limited in terms of the definite temporal information that can be expressed. This may significantly affect the
applicability of these classes.
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Probability of satisfiability for label size 6.5
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Figure 8.15: Nebel’s Phase transition of ISAT for IA when the label size is 6.5.

see [Nebel, 1997; Ladkin and Reinefeld, 1992]).

8.4.1 Backtracking and Path Consistency

Typically, the algorithms for processing intractable classes of relations in IA are based on
search methods that use backtracking [Bitner and Reingold, 1975; Shanahan and Southwick,
1989]. Ladkin and Reinefeld [Ladkin and Reinefeld, 1992] proposed a method for determin-
ing the consistency of a set of constraints in IA that is based on chronological backtracking,
and that uses path consistency algorithms as a forward checking and pruning technique. At
the time of writing their algorithm, which has also been investigated by van Beek and Man-
chak [van Beek and Manchak, 1996] and by Nebel [Nebel, 1997], appears to be the known
fastest (complete) method for handling constraints in the full IA, using the constraint network
representation.∗

Figure 8.16 gives Ladkin and Reinefeld’s algorithm as formulated by Nebel in [Nebel,
1997]. The input set of constraints is represented by a n × n matrix, where each entry
Cij contains the IA-relation between the interval variables i and j (1 ≤ i, j ≤ n). Split

is a tractable subset of IA (e.g., ORD-Horn). The larger is Split, the lower is the average
branching factor of the search.

Nebel proved that the algorithm is complete when Split is SIAc, SIA, or ORD-Horn
[Nebel, 1997]. He also analyzed experimentally the backtracking scheme of Figure 8.16
when Split is chosen to be one of the above tractable sets, showing that the use of ORD-
Horn leads to better performance on average. However, it turned out that there are other
algorithmic features that affect the performance of the backtracking algorithm more signif-
icantly than the choice of which kind of Split to use. These features regard the heuristics
for ordering the constraints to be processed, and the kind of path consistency algorithm used
at step 1 (this can be either based on a weighted queue scheme, such as the algorithm of

∗Another recent powerful approach is the one proposed in [Thornton et al., 2002; Thorthon et al., 2004],
that uses local search techniques for fast consistency checking. This method can outperform backtracking-based
methods. However, as any local search approach, it is incomplete.
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Algorithm: IA-CONSISTENCY(C)
Input: A matrix C representing a set Θ of constraints in IA
Output: true if Θ is satisfiable, false otherwise

1. C ← PATH-CONSISTENCY(C)
2. if C = false then
3. return false
4. else choose an unprocessed relation Cij and
5. split Cij into R1, . . . , Rk s.t. all Rl ∈ Split (1 ≤ l ≤ k)
6. if no relation can be split then
7. return true
8. for l← 1 to k do
9. Cij ← Rl
10. if IA-CONSISTENCY(C) then
11. return true
12. return false

Figure 8.16: Ladkin and Reinefeld’s backtracking algorithm for consistency checking of
IA-constraints [Ladkin and Reinefeld, 1992; Nebel, 1997].

Figure 8.2.2, or an algorithm based on an iterative scheme which uses no queue, such as the
algorithm PC-1 [Montanari, 1974; Mackworth, 1977]).∗

As shown by Nebel, from these design choices and the kind of tractable set used as Split,
we can derive different search strategies that on some problem instances have complemen-
tary performance. These strategies can be orthogonally combined to obtain a method that
can solve (within a certain time limit) more instances than those solvable using the single
strategies. (For more details, the interested reader may see [Nebel, 1997]).

Concerning the problems of computing the minimal network representation, one-to-all
relations and one-to-one relations, at the time of writing no specialized algorithm is known.
However, each of these problems can be easily reduced to a set of instances of the consis-
tency checking problem, which can be solved by using the backtracking algorithm illustrated
above. For example, in order to determine the one-to-one relation between two intervals I
and J , we can check the feasibility of each basic relation r contained in the stipulated rela-
tion R between I and J in the following way: first we replace R with r, and then we run
IA-CONSISTENCY to check the consistency of the modified network.

The problem of computing a consistent scenario (solution) can be reduced to the prob-
lem of consistency checking. In fact, a consistent scenario (solution) for an input set of
constraints exists only if the set is consistent and, in such a case, IA-CONSISTENCY has the
“side effect” of reducing it to a set of tractable constraints (depending on the value of Split,
these constraints can be, for example, in SIAc, SIA, or ORD-Horn). A consistent scenario
(solution) for this tractable set is also a scenario (solution) for the input set of constraints,
and can it be determined by using the techniques described in Section 8.3.1.

∗PC-2 [Mackworth, 1977] is another important path-consistency algorithm that has been used in the context of
temporal reasoning (e.g., [van Beek and Cohen, 1990]). A disadvantage of PC-2 is that it requires O(n3) space,
while the other algorithms that we have mentioned requires O(n2) space, where n is the number of the variables
in the input set of (qualitative) temporal constraints.
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8.4.2 Disjunctive Timegraphs

We now consider an alternative method for representing and processing intractable relations
in IA, which is based on an extension of the timegraph approach illustrated in Section 8.2.4.

A disjunctive timegraph (D-timegraph) is a pair 〈T,D〉, where T is a timegraph and D
a set of constraints in PA (PA-disjunctions) involving only point-variables in T (see Figure
8.17). Considering our trains example in Section 8.1, each of the temporal constraints 1–7
can be expressed using a D-timegraph. More in general, the disjunctions of a D-timegraph
add a great deal of expressive power to a timegraph, including the ability to represent re-
lations in ORD-Horn, disjointness of temporal intervals (see Figure 8.14). Moreover, A
D-timegraph can represent other relations not belonging to IA or PA, such as Vilain’s point-
interval relations [Vilain, 1982],∗ point-interval disjointness relations [Gerevini and Schu-
bert, 1994b] and some 3-interval and 4-interval relations [Gerevini and Schubert, 1995a]
such as

I {before} J ∨ K {before}H .†

The current algorithms for processing the disjunctions of a D-timegraph are specialized
for binary disjunctions, and hence not every relation in IA is representable (because there
are some relations that require ternary disjunctions). In principle, the techniques presented
in [Gerevini and Schubert, 1995a] can be extended to deal with arbitrary disjunctions.

AD-timegraph 〈T,D〉 is consistent if it is possible to select one of the disjuncts for each
PA-disjunction in D in such a way that the resulting collection of selected PA-constraints
can be consistently added to T . This set of selected disjuncts is called an instantiation of D
in T , and the task of finding such a set is called deciding D relative to T .

Once we have an instantiation of D, we can easily solve the problem of finding a consis-
tent scenario by adding the instantiation to T and using a topological sort algorithm [Cormen
et al., 1990]. In order to check whether a relation R between two time points x and y is en-
tailed by aD-timegraph 〈T,D〉, we can add the constraint xRy to T (whereR is the negation
of R), obtaining a new timegraph T ′, and then check if (a) T ′ is consistent, and (b)D can be
decided relative to T ′ (if T ′ is consistent). The originalD-timegraph entails xRy just in case
one of (a), (b) does not hold. This gives us a method for computing one-to-one relations,
one-to-all relations, as well as the minimal network representation using the D-timegraph
approach.

Deciding a set of binary PA-disjunctions is an NP-complete problem [Gerevini and Schu-
bert, 1994b]. However, in practice this task can be efficiently accomplished by using a
method described in [Gerevini and Schubert, 1994a; Gerevini and Schubert, 1995a]. Given
a disjunctive timegraph 〈T,D〉, the method for deciding D relative to T consists of two
phases:

∗Vilain’s class of point-interval relations is formed by 25 relations obtained by considering all the possible
disjunctions of five basic relations between a point and an interval.

†Point-interval disjointness can be used to state that a certain time point (perhaps an instantaneous action, or
the beginning or end of an action) must not be within a certain interval (another action, or the interval between
two actions). This kind of constraints is fundamental, for example, in nonlinear planning (e.g., [Chapman, 1987;
Pednault, 1986b; Sacerdoti, 1975; Tate, 1977; Weld, 1994; Yang, 1997]), where an earlier action may serve to
achieve the preconditions of a later one, and no further action should be inserted between them which would subvert
those preconditions.
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Figure 8.17: An example of D-timegraph 〈T,D〉 from [Gerevini and Schubert,
1995a]. The D-timegraph 〈T ′, D′〉 is equivalent to 〈T,D〉, and is obtained by
applying the pruning rules to the disjunctions in D using T .

• a preprocessing phase, which prunes the search space by reducingD to a subset D′ of
D, producing a timegraph T ′ such that D has an instantiation in T if and only if D′

has an instantiation in T ′;

• a search phase, which finds an instantiation of D′ in T ′ (if it exists) by using back-
tracking.

Preprocessing uses a set of efficient pruning rules exploiting the information provided by the
timegraph to reduce the set of the disjunctions to a logically equivalent subset. For example,
the “T-derivability” rule says, informally, that if the timegraph entails one of the disjuncts
of a certain disjunction, then such a disjunction can be removed without loss of informa-
tion; the “T-resolution” rule says that if the timegraph entails the negation of one of the two
disjuncts of a disjunction, then this disjunction can be reduced to the other disjunct (called
“T-resolvent”), which can then be added to the timegraph (provided that the timegraph does
not entail also the negation of the second disjunct); finally the “T-tautology” rule can be used
to detect whether a disjunction can be eliminated because it is a tautology with respect to
the information entailed by the timegraph. (For more details on these and other rules, the
interested reader may see [Gerevini and Schubert, 1995a].)

Various strategies are possible for preprocessing the set of disjunctions using the pruning
rules. The simplest strategy is the one in which the rules are applied to each disjunction once,
and the set of T-resolvents generated is added to the timegraph at the end of the process. For
example, theD-timegraph 〈T ′, D′〉 of Figure 8.17 can be obtained from 〈T,D〉 by following
this simple strategy.∗

A more complete strategy, though more computationally expensive, is to add the T-
resolvents to the graph as soon as they are generated, and to iterate the application of the

∗D(1) and D(3) are eliminated by T-resolution, D(2) by T-derivability and D(4) by T-tautology.
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rules till no further disjunction can be eliminated. This strategy is still polynomial, and it is
complete for the class of PA-disjunctions translating a set of interval relations in ORD-Horn
[Gerevini and Schubert, 1995a]. In general, the choice of the preprocessing strategy depends
on how much effort one wants to dedicate to the preprocessing step and how much to the
search step.

Once the initial set of disjunctions has been processed by applying the pruning rules,
if this processing has not been sufficient to decide consistency, then the search for an in-
stantiation of the remaining disjunctions is activated. Gerevini and Schubert proposed a
search algorithm specialized for binary disjunctions of strict inequalities, which can express
the practically important relation before or after, as well as point-interval disjointness (i.e.,
exclusion of a point form an interval). The algorithm is based on a “partially selective back-
tracking” technique, which combines chronological backtracking and a form of selective
backtracking [Gerevini and Schubert, 1995a; Bruynooghe, 1981; Shanahan and Southwick,
1989].

The experimental results presented in [Gerevini and Schubert, 1995a] show that the D-
timegraph approach is very efficient especially when the timegraph is not very sparse (i.e.,
“enough” non-disjunctive temporal information is available), and the number of disjunctions
is relatively small with respect to the number of input PA-constraints represented in the time-
graph. For more difficult cases (sparse timegraphs with few PA-constraints and numerous
PA-disjunctions) a “forward propagation” technique can be included into the basic search
algorithm. Such a technique can dramatically reduce the number of backtracks.

8.5 Concluding Remarks

The ability to efficiently represent and process temporal information is an important issue
in AI, as well as in other discipline of computer science (e.g., [Song and Cohen, 1991;
Lascarides and Oberlander, 1993; Hwang and Schubert, 1994; Snodgrass, 1990; Kline, 1993;
Kline, 1993; Özsoyǒglu and Snodgrass, 1995; Orgun, 1996; Golumbic and Shamir, 1993]).
In this chapter we have surveyed a collection of techniques for processing qualitative tem-
poral constraints, focusing on fundamental reasoning tasks, such as consistency checking,
finding a solution (or consistent scenario), and deducing (or querying) new constraints from
those that are explicitly given.

We believe that this style of temporal reasoning is relatively mature and has much to
offer to the development of practical applications. However, at the time of writing there are
still some important aspects that deserve further research. These include the following:

• The design and experimental evaluation of efficient methods for incremental qualita-
tive temporal reasoning, both in the context of the general constraint network approach
and of specialized graph-based representations like timegraphs or series-parallel graphs.
In fact, in many applications we are interested in maintaining certain properties (e.g.,
consistency, the minimal network representation or the time chain partition of a TL-
graph), rather then recomputing them from scratch each time a new constraint is as-
serted, or an existing constraint is retracted. Some studies in this direction for metric
constraints are presented in [Bell and Tate, 1985; Cervoni et al., 1994; Gerevini et
al., 1996], while other more recent studies focusing on qualitative constraints are de-
scribed in [Delgrande and Gupta, 2002; Gerevini, 2003a; Gerevini, 2003b].
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• The study of alternative algorithms for dealing with intractable classes of temporal
constraints, such as anytime algorithms (e.g., [Boddy and Dean, 1994; Hansen and Zil-
berstein, 1996; Zilberstein, 1996]), and algorithms based on local search techniques.
As we have already mentioned, an interesting example of such techniques for qualita-
tive temporal reasoning is given in [Thorthon et al., 2004].

• The study of new methods for representing and managing qualitative relations involv-
ing non-convex intervals, which, for example, can be useful in the representation of
periodic events (e.g., [Leban et al., 1986; Poesio and Brachman, 1991]).∗

• The design of new efficient representations and algorithms for managing combined
qualitative and metric temporal information. In particular, the integration of metric
constraints involving deadlines, durations and absolute times into the timegraph rep-
resentation is a promising research direction for addressing scalability in temporal
reasoning with qualitative and metric information.†

• The study of new algorithms for handling Interval Algebra relations extended with
qualitative relations about the relative duration of the involved intervals (e.g, I over-
laps J and the duration of I is shorter that the duration of J). An interesting calculus
for dealing with this type of temporal constraints has been proposed and studied in
[Pujari et al., 1999; Kumari and Pujari, 2002; Balbiani et al., 2003]. Hoewever, it
appears that this calculus has not yet been fully investigated from an algorithmic point
of view.

• The integration of qualitative temporal reasoning and other types of constraint-based
reasoning, such as qualitative spatial reasoning, into a uniform framework. For in-
stance, the Spatio-Temporal Constraint Calculus is a recent approach for spatio-temporal
reasoning integrating Allen’s Interval Algebra and the Region Connection Calculus
RCC-8 [Randell et al., 1992; Bennett et al., 2002a; Gerevini and Nebel, 2002]. The
development of efficient reasoning algorithms for such a combined calculus is an im-
portant direction for future research.

∗In this chapter we have not treated this type of qualitative constraints. The interested reader can see other
chapters in this book.

†These metric constraints were handled in the original implementation of timegraphs [Schubert et al., 1987;
Miller and Schubert, 1990], but 6= and PA-disjunctions were not handled, and also < and ≤ relations entailed via
metric relations were not extracted in a deductively complete way.


