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Motivations
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Actions can fail in unexpected ways 
It is impossible to anticipate all possible failures

But plan execution can fail

Real World
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Planning is done using abstract models (e.g. PDDL)

Deterministic planning provides 
valid plans
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Actions can fail in unexpected ways
It is impossible to anticipate all possible failures

Deterministic planning provides 
valid plans

Real World

What can we do?

Find solutions resilient to a number of failures
(with repair guarantees in case of action failures)

Agnostic to the particular reason of  failure

Planning is done using abstract models (e.g. PDDL)
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But plan execution can fail



Resilient Solutions
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A K-Resilient problem is a pair <Π, K> where:
● Π = Fully observable deterministic search problem
● K is an integer denoting a number of action failures we should be able to 

recover from, if they occur in a sequence of actions (a plan) solving Π.

K-Resilient Plan solving <Π, K> is
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(Bounded) Resilient Solutions

A plan for Π that guarantees we can recover from up to K action failures
during its execution, and still achieve the goals.



Assumptions about the failure model: when an action fails, (1) the current state 
remains the same, and (2) the faulty action cannot be later reused.

For a problem Π:

k-Resilient State: a state from which we can reach a goal state even if k failures 
occur: 

1. A goal state is k-resilient.
2. A state s is 0-resilient if a plan from s to a goal state exists.
3. A state s is k-resilient if there exists an action a such that (1) its execution in s

results in another k-resilient state, and (2) s is still (k-1)-resilient without using a.

K-Resilient plan solving <Π, K>: a  solution plan for Π where all traversed  states are    
K-resilient. 8

Main Assumptions and Definitions



Illustrative Example (k-resilient state)

Init Goal

Action types:

States: A, B, ..., G  marked by k-resilience values
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plane(src, dst)
train(src, dst)

car(src, dst)



Illustrative Example (k-resilient state)
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Action types:

States: A, B, ..., G  marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst) train(F, G)

Init Goal



Illustrative Example (k-resilient state)
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Action types:

States: A, B, ..., G  marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst)

plane(E, G)car(E, D)

car(D, G)
Init Goal



Illustrative Example (k-resilient state)
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Action types:

States: A, B, ..., G  marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst)

car(D, G)

train(D, G)

car(D, F)
train(F, G)

Init Goal



ResPlan Algorithm and k-Resilience Checking

Method (high level): Find a plan 𝜋 that solves Π and verify that every state
traversed by 𝜋 is K-resilient.

k-Resilience check <s, k, V>:   is state s a k-resilient state in <F, A \ V, s0, 
G>?

Following the definition of k-resilient state, it answers whether state s is k-
resilient without using the faulty actions V (forbidden after failure).
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<G, 2, {}>:

<F, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:

Plan under evaluation: car(A,B), train(B,F), train(F,G)     Is it 2-resilient?
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ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:
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Plan under evaluation: car(A,B), train(B,F), train(F,G)     Is it 2-resilient?

ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: 
<F[train(F,G)]=G, 2, {}>:
<F, 1, {train(F,G)}>:

<B, 2, {}>:

<A, 2, {}>:
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Plan under evaluation: car(A,B), train(B,F), train(F,G)     Is it 2-resilient?

ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: 
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:
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Plan under evaluation: car(A,B), train(B,F), train(F,G)     Is it 2-resilient? NO

ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: FALSE
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:
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Partial plan under evaluation: car(A,B), train(B,F), train(F,G)

ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: FALSE
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:

when (re)planning, avoid visiting states that we discovered not resilient
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Partial plan under evaluation: car(A,B), train(B,F), train(F,G)

ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state 

<D, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:

Revised plan under evaluation: car(A,B), car(B,D), car(D,G)   Is it 2-resilient?
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ResPlan and k-Resilience Checking



<G, 2, {}>: TRUE, G is a goal state 

<D, 2, {}>: TRUE
<D[car(D,G)]=G, 2, {}>: TRUE
<D, 1, {car(D,G)}>: TRUE

<D[train(D,G)]= G, 1, {car(D,G)>: 
TRUE

<D, 0, {train(D,G),car(D,G)>: TRUE

<B, 2, {}>:

<A, 2, {}>:

ResPlan and k-Resilience Checking
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Revised plan under evaluation: car(A,B), car(B,D), car(D,G)   Is it 2-resilient?



<G, 2, {}>: TRUE, G is a goal state 

<D, 2, {}>: TRUE
<D[car(D,G)]=G, 2, {}>: TRUE
<D, 1, {car(D,G)}>: TRUE

<D[train(D,G)]= G, 1, {car(D,G)>: TRUE
<D, 0, {train(D,G),car(D,G)>: TRUE

<B, 2, {}>: TRUE

<A, 2, {}>: TRUE
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Revised plan under evaluation: car(A,B), car(B,D), car(D,G) Is it 2-resilient? YES

ResPlan and k-Resilience Checking


