
Action-Failure
Resilient Solution Search

Motivations
2

Actions can fail in unexpected ways
It is impossible to anticipate all possible failures

But plan execution can fail

Real World

3

Planning is done using abstract models (e.g. PDDL)

Deterministic planning provides
valid plans

Actions can fail in unexpected ways
It is impossible to anticipate all possible failures

Deterministic planning provides
valid plans

Real World

What can we do?

Planning is done using abstract models (e.g. PDDL)

But plan execution can fail

Actions can fail in unexpected ways
It is impossible to anticipate all possible failures

Deterministic planning provides
valid plans

Real World

What can we do?

Find solutions resilient to a number of failures
(with repair guarantees in case of action failures)

Agnostic to the particular reason of failure

Planning is done using abstract models (e.g. PDDL)

5

But plan execution can fail

Resilient Solutions
6

A K-Resilient problem is a pair <Π, K> where:
● Π = Fully observable deterministic search problem
● K is an integer denoting a number of action failures we should be able to

recover from, if they occur in a sequence of actions (a plan) solving Π.

K-Resilient Plan solving <Π, K> is

7

(Bounded) Resilient Solutions

A plan for Π that guarantees we can recover from up to K action failures
during its execution, and still achieve the goals.

Assumptions about the failure model: when an action fails, (1) the current state
remains the same, and (2) the faulty action cannot be later reused.

For a problem Π:

k-Resilient State: a state from which we can reach a goal state even if k failures
occur:

1. A goal state is k-resilient.
2. A state s is 0-resilient if a plan from s to a goal state exists.
3. A state s is k-resilient if there exists an action a such that (1) its execution in s

results in another k-resilient state, and (2) s is still (k-1)-resilient without using a.

K-Resilient plan solving <Π, K>: a solution plan for Π where all traversed states are
K-resilient. 8

Main Assumptions and Definitions

Illustrative Example (k-resilient state)

Init Goal

Action types:

States: A, B, ..., G marked by k-resilience values
9

plane(src, dst)
train(src, dst)

car(src, dst)

Illustrative Example (k-resilient state)

10

Action types:

States: A, B, ..., G marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst) train(F, G)

Init Goal

Illustrative Example (k-resilient state)

11

Action types:

States: A, B, ..., G marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst)

plane(E, G)car(E, D)

car(D, G)
Init Goal

Illustrative Example (k-resilient state)

12

Action types:

States: A, B, ..., G marked by k-resilience values

plane(src, dst)
train(src, dst)

car(src, dst)

car(D, G)

train(D, G)

car(D, F)
train(F, G)

Init Goal

ResPlan Algorithm and k-Resilience Checking

Method (high level): Find a plan 𝜋 that solves Π and verify that every state
traversed by 𝜋 is K-resilient.

k-Resilience check <s, k, V>: is state s a k-resilient state in <F, A \ V, s0,
G>?

Following the definition of k-resilient state, it answers whether state s is k-
resilient without using the faulty actions V (forbidden after failure).

13

<G, 2, {}>:

<F, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:

Plan under evaluation: car(A,B), train(B,F), train(F,G) Is it 2-resilient?

14

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:

15

Plan under evaluation: car(A,B), train(B,F), train(F,G) Is it 2-resilient?

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>:
<F[train(F,G)]=G, 2, {}>:
<F, 1, {train(F,G)}>:

<B, 2, {}>:

<A, 2, {}>:

16

Plan under evaluation: car(A,B), train(B,F), train(F,G) Is it 2-resilient?

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>:
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:

17

Plan under evaluation: car(A,B), train(B,F), train(F,G) Is it 2-resilient? NO

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: FALSE
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:

18

Partial plan under evaluation: car(A,B), train(B,F), train(F,G)

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<F, 2, {}>: FALSE
<F[train(F,G)]=G, 2, {}>: TRUE
<F, 1, {train(F,G)}>: FALSE

<B, 2, {}>:

<A, 2, {}>:

when (re)planning, avoid visiting states that we discovered not resilient

19

Partial plan under evaluation: car(A,B), train(B,F), train(F,G)

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<D, 2, {}>:

<B, 2, {}>:

<A, 2, {}>:

Revised plan under evaluation: car(A,B), car(B,D), car(D,G) Is it 2-resilient?

20

ResPlan and k-Resilience Checking

<G, 2, {}>: TRUE, G is a goal state

<D, 2, {}>: TRUE
<D[car(D,G)]=G, 2, {}>: TRUE
<D, 1, {car(D,G)}>: TRUE

<D[train(D,G)]= G, 1, {car(D,G)>:
TRUE

<D, 0, {train(D,G),car(D,G)>: TRUE

<B, 2, {}>:

<A, 2, {}>:

ResPlan and k-Resilience Checking

21

Revised plan under evaluation: car(A,B), car(B,D), car(D,G) Is it 2-resilient?

<G, 2, {}>: TRUE, G is a goal state

<D, 2, {}>: TRUE
<D[car(D,G)]=G, 2, {}>: TRUE
<D, 1, {car(D,G)}>: TRUE

<D[train(D,G)]= G, 1, {car(D,G)>: TRUE
<D, 0, {train(D,G),car(D,G)>: TRUE

<B, 2, {}>: TRUE

<A, 2, {}>: TRUE

22

Revised plan under evaluation: car(A,B), car(B,D), car(D,G) Is it 2-resilient? YES

ResPlan and k-Resilience Checking

