
IBM Cloud:
Create, Integrate &
Deploy

104/12/2017 © 2017 IBM Corporation

Agenda

204/12/2017 © 2017 IBM Corporation

• Introduction
• Call for Code
• Python
• Flask
• Visual Recognition
• Tutorial – Flask App Building

Davide Pisoni

IT Analyst

Call for Code inspires developers
to solve pressing global
problems with sustainable
software solutions, delivering
on their vast potential to do good.

Bringing together NGOs,
academic institutions,
enterprises, and startup
developers to compete build
effective disaster mitigation
solutions, with a focus on health
and well-being.

Award winners will receive long-term
support through The Linux
Foundation, financial prizes, the
opportunity to present their solution
to leading VCs, and will deploy their
solution through IBM’s Corporate
Service Corps.

Developers will jump-start their
project with dedicated IBM Code
Patterns, combined with optional
enterprise technology to build
projects over the course of three
months.

Judged by the world’s most
renowned technologists, the grand
prize will be presented in October at
an Award Event.

LAUNCHED MAY 2018!

Quick-Links:

CallforCode FAQ

CallforCode Resources

https://developer.ibm.com/callforcode/

https://apps.na.collabserv.com/wikis/home?lang=en-us#!/wiki/Wafc864fce169_45bb_bfa8_d1886fd07153/page/Call%20for%20Code%20FAQ
https://apps.na.collabserv.com/wikis/home?lang=en-us#!/wiki/Wafc864fce169_45bb_bfa8_d1886fd07153/page/Call%20for%20Code%20Resources
https://developer.ibm.com/callforcode/

Python: Introduction

404/12/2017 © 2017 IBM Corporation

Features

• Python code is more clearly defined and visible to the eyes.

• Python's bulk of the library is very portable and cross-platform compatible
on UNIX, Windows, and Macintosh.

• Python has support for an interactive mode which allows interactive testing
and debugging of snippets of code.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python is a high-level, interpreted, interactive and object-oriented scripting language,
designed to be highly readable.

Python was developed by Guido van Rossum in the late eighties and early nineties at the
National Research Institute for Mathematics and Computer Science in the Netherlands.
Now is maintained by a core development team at the institute, although Guido van
Rossum still holds a vital role in directing its progress.

Python is a great language for the beginner-level programmers and supports the
development of a wide range of applications from simple text processing to WWW
browsers to games.

• Python can run on a wide variety of hardware platforms and has the same
interface on all platforms.

• Python provides interfaces to all major commercial databases.

• It can be used as a scripting language or can be compiled to byte-code for building
large applications.

• It provides very high-level dynamic data types and supports dynamic type
checking.

Python: Syntax

504/12/2017 © 2017 IBM Corporation

Variables Loops Functions

Operations Import Libraries

Flask

604/12/2017 © 2017 IBM Corporation

A Web Application Framework or simply Web Framework represents a collection of libraries and modules
that enables a web application developer to write applications without having to bother about low-level
details such as protocols, thread management, etc...

Flask is a web application framework written in Python. It is developed by Armin Ronacher, who leads an
international group of Python enthusiasts named Pocco. Flask is based on the Werkzeug WSGI toolkit and
Jinja2 template engine. Let’s see them in details:

Documentation: http://flask.pocoo.org/

WSGI

Web Server Gateway Interface
(WSGI) has been adopted as a
standard for Python web application
development. WSGI is a specification
for a universal interface between the
web server and the web applications.

Werkzeug

It is a WSGI toolkit, which
implements requests, response
objects, and other utility
functions. This enables building a
web framework on top of it. The
Flask framework uses Werkzeug
as one of its bases.

jinja2

jinja2 is a popular templating
engine for Python. A web
templating system combines a
template with a certain data
source to render dynamic web
pages.

http://flask.pocoo.org/

Flask App Schema

704/12/2017 © 2017 IBM Corporation

TemplatesView

Model

TemplatesView

..
.

..
.

DB

App

Blueprint_2

Blueprint_1
The core interacts with three
main concepts: View,
Templates and Model.

• View: views are functions
that take care of the
backend, routes and to
render the templates of
each page of your app

• Templates: templates
are the dynamic structure
of each page

• Model*: is the schema of
the database where
views can recover data

A flask web app is based on a core (a Flask object), that initialize the app.

* During this course, model interaction and costruction won’t be presented

A view and a templates create a Blueprint, that can be registered in the core and call on each
request from users’ browsers.

Watson Visual Recognition

804/12/2017 © 2017 IBM Corporation

One of the Watson API is Watson Visual Recognition, an IBM Cloud Service to
classify images and create custom classifier

• Api Reference:
https://www.ibm.com/watson/developercloud/
visual-recognition/api/v3/curl.html?curl

• Documentation:
https://console.bluemix.net/docs/services/visu
al-recognition/getting-started.html#getting-
started-tutorial

https://www.ibm.com/watson/developercloud/visual-recognition/api/v3/curl.html?curl
https://console.bluemix.net/docs/services/visual-recognition/getting-started.html#getting-started-tutorial

Tutorial
Flask App on

IBM Cloud
904/12/2017 © 2017 IBM Corporation

Today we will crate a simple
Flask app to classify the
images trough the Watson
Visual Recognition Service

1004/12/2017 © 2017 IBM Corporation

Prerequisites

1104/12/2017 © 2017 IBM Corporation

1. Python Version >= 3.6

2. IBM Cloud Account (https://console.bluemix.net/registration/)

3. CLI Command Line
(https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started)

https://console.bluemix.net/registration/
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started

Istructions: Flask Image Recognition

1204/12/2017 © 2017 IBM Corporation

1. Create Watson Visual Recognition and Watson Studio
Services in IBM Cloud

2. Create a local Flask App

3. Integrates Visual recognition in the app trough the
python sdk

4. Deploy the app on IBM Cloud

IBM Cloud Dashboard

1304/12/2017 © 2017 IBM Corporation

Create Visual Recogition Service(1/2)

1404/12/2017 © 2017 IBM Corporation

Login in the IBM Cloud, go to catalog and select in the Watson API the Visual
Recognition Service

Create Visual Recogition Service(2/2)

1504/12/2017 © 2017 IBM Corporation

Then click on create: if everything goes well you’ll be redirected on the page of
your service

Here you can see the service credentials (in particular the API_KEY), used to call
the service from the python SDK

Create Watson Studio Service

1604/12/2017 © 2017 IBM Corporation

Login in the IBM Cloud, go to catalog and select in the Watson section the
Watson Studio

Watson Studio
provides a suite of
tools and a
collaborative
environment for data
scientists, developers
and domain experts.
Trough this service,
you will be able to use
the user interface of
Visual Recognition
and create custom
cluster.

First Step

1704/12/2017 © 2017 IBM Corporation

1. Create a Folder for our app (e.g. Flask_App)

2. Open the command line (cmd) and navigate to the folder of your app (cd path_to_your_folder)

3. Using the virtualenv library pre-installed in python >=3.0, create a virtual environment to work in, by
using the following command in the cmd: python –m venv venv

4. Activate the virtual env with the following line: venv\Scripts\activate (to deactivate it you can use the
command deactivate)

5. Once the venv is on (you will see venv at the begging of the line), we can install the libraries that we will
need with pip:

– Pip install Flask

– Pip install watson_developer_cloud (this is the python sdk to use Watson API)*

*In case you struggle with Watson Developer Cloud installation, download the right dependecies from
here: https://www.lfd.uci.edu/~gohlke/pythonlibs/ and install them manually with pip install file.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/

Flask App

1804/12/2017 © 2017 IBM Corporation

Now we can start creating a basic Flask app with a super simple homepage

1. Create a folder called project, that will contains all our pages, and inisde it create three folders called home,
static and templates, and a file named __init__.py, this file initialize the app.

2. Inside the home folder, create a templates folder and two files, one called views.py and one __init__.py (this file
remains empty and just state that python can go inside this folder to get function or variables). Here is the tree:

project/
static/
templates/
home/

templates/
views.py
__init__.py

__init__.py

This way we create our structure: static folder contains static files, like css or images to call in the templates,
templates folder contains a base html, sort of standard format for all our pages, and home folder is our homepage.

Initialize App

1904/12/2017 © 2017 IBM Corporation

Inside the __init__.py write the following code:

Import Flask library

Initialize the app class

Select the configuration for the app (see next slide)

Here we are registering the pages of our site:
blueprint help us to too link Views and templates,
and by registering them, we let the app know
where and what they are. Every time you create a
new page, remember to register its blueprint

Conifg.py

2004/12/2017 © 2017 IBM Corporation

In the slide before we initialize the app with a configuration that come from a file inside outside the project
folder called config.py: this file contains the configuration of the app, global variabile, static folder, etc....

Here we create a BeseConfig
object class, with some
global varables set, and two
other config objects
(Development Config and
Production Config) that
extend it.

Global Variables can be:

Debug: to set the debug on or
off

Secret Key: used to secure
your session

Many others can be found in
Flask documentation

Base.html and Bootstrap.css

2104/12/2017 © 2017 IBM Corporation

Thanks to jinja2 we can use a sort of standard layout for all our pages and extend it when necessary. To do so
we create a base.html file in the templates folder inside project

This way we can set and use css or js script globally
in all our templates, insert our child templates, catch
and handle error or flash messages.

For example we can download the bootstrap css
style: https://getbootstrap.com/

Put it inside the static folder and call it from the
base.html file to set it globally

https://getbootstrap.com/

Home - Views.py

2204/12/2017 © 2017 IBM Corporation

Now we can start creating our first view for our homepage: inside the views.py file we define the blueprint to
link view and templates, the route to access this view and the backend function for the view

As always we import the library, we define
the Blueprint home, to connect the View with
the templates folder to get the html files, and
at the end we define the route.

The routes are the different URLs that the
application implements. In Flask, handlers
for the application routes are written as
Python functions, called view functions.

View functions are mapped to one or more
route URLs so that Flask knows what logic to
execute when a client requests a given URL.

Home - templates

2304/12/2017 © 2017 IBM Corporation

Now that we have set our view, we can create our index.html in templates folder to render it and decide
what to show users: we extend the base.html created before with just a title in the page

Run!

2404/12/2017 © 2017 IBM Corporation

We are ready to run our app locally: to do so we need to create our run.py file to fire up the server. We import
our app and we set the host and the port to run the app. Put this file outside the project folder.

Once done, inside your virtual env you can type python run.py and go to localhost:5000 in your browser to
see your app running!

Integrates Watson Visual Recognition

2504/12/2017 © 2017 IBM Corporation

To integrate Watson Visual Recognition, we create a function to classify images calling the service and modify
the templates and the view inside home to let the users upload an image, select the classifier and classify it.

Let’s start by creating the function to call the service and classify an image:

1. Create a new function folder function inside project

2. Inside create a file image_recognition.py

First we initialize the service:
replace api_key with the one
inside the credentials of the
service on IBM Cloud.

Then we create a function
thate takes a path of an image
and a classifier name, give
them to the visual_recognition
instance and return a json
with the results

Forms

2604/12/2017 © 2017 IBM Corporation

To upload an image and select the classifier we will use a form: Flask handle forms with a specific library
called flask-wtf. So first of all install the library inside our virtual env: pip install flask-wtf

Then inside our home folder create a new file called forms.py where we initialize field in our form: a File field
to upload image and a SelectField to choose between a list of classifier:

Import library, initialize our Form
Class and create the two fields
(one to select the classifier and
one to upload file), with a series of
validators to check that the user
uploaded a file and the correct
type of file.

Flask-Wtf contains a long list of
possibile field, allowing you to
create every type of form

Handle Forms

2704/12/2017 © 2017 IBM Corporation

Once created the form, we need to adjust our view file to handle it and modify the html to render it.

In the view file we just import the form class on top: from project.home.forms import PhotoForm

Then inside the view function we initialize the form by declaring it and add it in the variable passed to the
templates: form=PhotoForm() and then return render_template('index.html',form=form, error=error)

Your view function should look like this:

Form in the templates

2804/12/2017 © 2017 IBM Corporation

Now we modify the index.html file to render the
form: so we create a form tag and inside it we put
the two fields of our form.

Thanks to jinja2 we can call the element sent from
the view with {{...}} and handle errors coming from
validation error.

The csrf_token is used by WtfForm to validate
forms.

At the end of the form we place a button to submit
the inserted value and file.

Once done you can run your app and see your new
form. If you press the button Classify as you can
see nothing happen, because we still have to
handle the post request coming from the form and
upload the image.

Post request and Upload Images

2904/12/2017 © 2017 IBM Corporation

To handle post request in our view we need to insert a check if the methods used to call the page is POST.
After that we check if the form is validated and, if so, we can upload the image server side, classify it and
show to the user the result.

So we import our function to classify images views.py file and add request to Flask import :

from project.function.image_recognition import classify_image

Then we modifiy our view file like so:

We save our uploaded image in an
images folder that we need to
create in static.

Then we pass the path to the
image and the classifier selected
to our function to classify images.

At the end we sent to the template
the photo name and the results
from the classification

Render images and results

3004/12/2017 © 2017 IBM Corporation

Finally we can render the image uploaded by the users and the results by adding this line to the index.html:

As you can see the results is not formatted well in the page: we can remedy by adding a css file in the static
folder and add it in the base.html. Css file are used to style html pages. Here is an example of a mycss.css file:

Deployment: File Required

3104/12/2017 © 2017 IBM Corporation

Prima di fare il deploy dell’applicazione serve aggiungere i seguenti file all’applicazione:
• Manifest.yml: generalità (ram, buildpack,etc...) e nome della nostra applicazione

• ProcFile: codice per far avviare la nostra applicazione quando sarà caricata sul cloud

• Requirments.txt: un file testo contenente tutte le librerie python da installare per far funzionare
l’applicazione. Inside the virtual env use: pip freeze > requirements.txt (check wether the file contains
dot...)

• Runtime.txt: un file testo contenente la versione di python da usare per l’applicazione (consultare
quelle possibili https://console.bluemix.net/docs/runtimes/python/index.html#python_runtime)

applications:
- path: .
buildpack: python_buildpack
memory: 128M
instances: 1
Command: python run.py
name: Flask_app
disk_quota: 1024M

web: python run.py

https://console.bluemix.net/docs/runtimes/python/index.html#python_runtime

Deployment: App Push

3204/12/2017 © 2017 IBM Corporation

Now we are ready to deploy our app on IBM Cloud:

1. Navigate on your app folder Flask_App with the cmd

2. Use command bluemix login to login to IBM Cloud

3. Select the space and the region when prompt

4. Use bluemix target --cf to set the org and the space

5. Finally bluemix app push name_of_the_app

If the stage process goes well you will see your app on yuor dashboard: you can click on it and click on the
link Visit_URL

Your app is online!

3304/12/2017 © 2017 IBM Corporation

For any questions, email me: davide.pisoni@it.ibm.com

Thank
You

3404/12/2017 © 2017 IBM Corporation

