Beyond Q-Learning

Roberto Capobianco

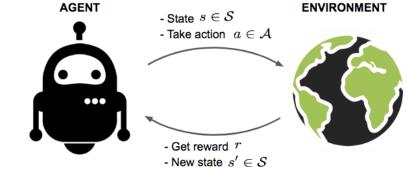
Reinforcement Learning

RL Recap

Differently from dynamic programming (and more generally planning) we do not assume complete knowledge of the environment.

RL methods require only **experience**

- Model (world) generates only transitions
- Probability distribution of transitions is unknown
- Reward function is unknown



Value of a state is the expected cumulated return from that state

Notation & Assumptions

Previous part of the course: state is *x*

Now: state is s

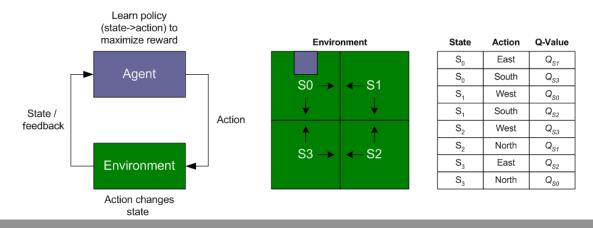
Transition probability: P(s'|s,a)

Assumptions:

- Experience is divided into episodes
- All episodes eventually terminate
- Only on completion of episode values are estimated and policies changed

Action Values

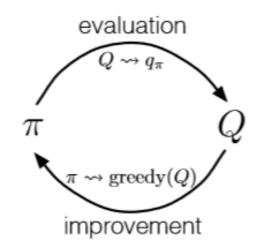
- If model not available, action values q are very useful
 - More than state values, that do not determine a policy
 - State values need a lookahead step to see which action is best
 - Without model, state values are not sufficient
- Policy evaluation if model unknown consists in estimating $q_{\pi}(s, a)$
 - Expected return starting in *s*, taking action *a* and then following π
 - Essentially the same as estimating state values



Reinforcement Learning

Overall Schema

- Similar to dynamic programming (policy iteration)
 - Maintain approximate policy and approximate value for policy
 - Value is repeatedly altered to better approximate value of π
 - Policy is repeatedly improved with respect to current value
 - Creates moving target for each other, while approaching optimality



RL Policy Iteration

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DI ROMA

- Alternate complete steps of policy evaluation (E) and improvement (I)
- Begin with arbitrary policy π_0
- End with optimal policy and action-value function

$$\pi_0 \xrightarrow{E} q_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} q_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} q_*$$

- Evaluation is done with value estimate
 - Many episodes experienced
 - Approximate action-value function approaches true one
 - Assume we observe infinite episodes: q_{π_k} is exact for an arbitrary policy π_k
- Policy evaluation is **DIFFICULT**

RL Policy Improvement

- Policy improvement: make policy greedy wrt current value function
 - No model is needed, because we have action value function
 - $\pi(s) = \operatorname{argmax}_a q(s, a)$
 - Policy improvement is done by setting π_{k+1} as greedy policy wrt q_{π_k}
- Policy improvement theorem applies to π_k and π_{k+1} , since $q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \operatorname{argmax}_a q_{\pi_k}(s, a)) = \max_a q_{\pi_k}(s, a) \ge q_{\pi_k}(s, \pi_k(s)) \ge v_{\pi_k}(s)$

RL Policy Improvement

- Policy improvement: make policy greedy wrt current value function
 - No model is needed, because we have action value function
 - $\pi(s) = \operatorname{argmax}_a q(s, a)$
 - Policy improvement is done by setting π_{k+1} as greedy policy wrt q_{π_k}
- Policy improvement theorem applies to π_k and π_{k+1} , since $q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \operatorname{argmax}_a q_{\pi_k}(s, a)) = \max_a q_{\pi_k}(s, a) \ge q_{\pi_k}(s, \pi_k(s)) \ge v_{\pi_k}(s)$

This is the easy part

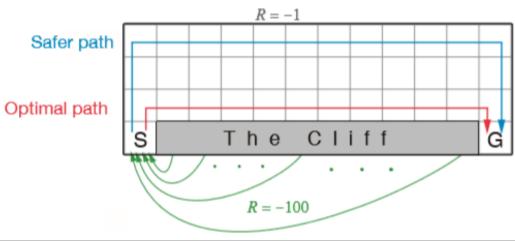
SARSA and Q-Learning

SARSA

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Q-Learning

 $\begin{array}{l} \mbox{Algorithm parameters: step size } \alpha \in (0,1], \mbox{ small } \varepsilon > 0 \\ \mbox{Initialize } Q(s,a), \mbox{ for all } s \in \mathbb{S}^+, a \in \mathcal{A}(s), \mbox{ arbitrarily except that } Q(\textit{terminal}, \cdot) = 0 \\ \mbox{Loop for each episode:} \\ \mbox{Initialize } S \\ \mbox{Loop for each step of episode:} \\ \mbox{Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., } \varepsilon \mbox{-greedy}) \\ \mbox{Take action } A, \mbox{ observe } R, \mbox{ } S' \\ \mbox{ } Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A) \big] \\ \mbox{ } S \leftarrow S' \\ \mbox{ until } S \mbox{ is terminal} \\ \end{array}$



Reinforcement Learning

Data Collection

- Affects the policy evaluation step
- **On-policy** (e.g. SARSA) learns *q*s for a near-optimal policy that explores
 - Try to learn action values conditional on subsequent optimal behavior
 - Need to behave non-optimally to explore all actions
 - Behavior and learning policy are the same
- **Off-policy** (e.g., Q-Learning):
 - Use two policies:
 - One to be learned (target policy)
 - One to generate behavior (**behavior policy**)

Data Collection

- **On-policy** (e.g. SARSA) learns *q*s for a near-optimal policy that explores
 - Try to learn action values conditional on subsequent optimal behavior
 - Need to behave non-optimally to explore all actions
 - Behavior and learning policy are the same
- **Off-policy** (e.g., Q-Learning):
 - Use two policies:
 - One to be learned (target policy)
 - One to generate behavior (**behavior policy**)

WHY IS Q-LEARNING OFF-POLICY?

ϵ -greedy

- Policy is generally **soft**
 - $\pi(a|s) > 0, \forall s \in S, \forall a \in A(s)$
 - Gradually shifted closer and closer to deterministic optimal policy
- We consider ϵ -greedy policies
 - All nongreedy actions are given the minimal probability of selection $\frac{\epsilon}{|A(s)|}$
 - Greedy action has probability $1 \epsilon + \frac{\epsilon}{|A(s)|}$
 - ϵ -soft policy: $\pi(a|s) \ge \frac{\epsilon}{|A(s)|}$ for all states, actions and for some $\epsilon > 0$
 - Closest to greedy among ϵ -soft policies
- Why do we need this?

ϵ -greedy

- Policy is generally soft
 - $\pi(a|s) > 0, \forall s \in S, \forall a \in A(s)$
 - Gradually shifted closer and closer to deterministic optimal policy
- We consider ϵ -greedy policies
 - All nongreedy actions are given the minimal probability of selection $\frac{\epsilon}{|A(s)|}$
 - Greedy action has probability $1 \epsilon + \frac{\epsilon}{|A(s)|}$
 - ϵ -soft policy: $\pi(a|s) \ge \frac{\epsilon}{|A(s)|}$ for all states, actions and for some $\epsilon > 0$
 - Closest to greedy among ϵ -soft policies
- Why do we need this? We need to estimate value of all actions, not just favored ones: EXPLORATION

Explore VS Exploit

EXPLOITATION

Playing the machine that (currently) pays out the most.

EXPLORATION

Playing the other machines to see if any pay out more.

Reinforcement Learning

RL Target

- Central idea: update a(n) (action-)value function
- All approaches use this general update step

$$V(s_t) \leftarrow V(s_t) + \alpha[T_t - V(s_t)]$$

- *T_t*: target computed at time *t*
- α : constant or adaptive step-size
- Update is done every time non-terminal state is visited
- Target can be computed via
 - (n-step) Bootstrapping or TD error (sampled or expected)
 - Monte-Carlo sampling

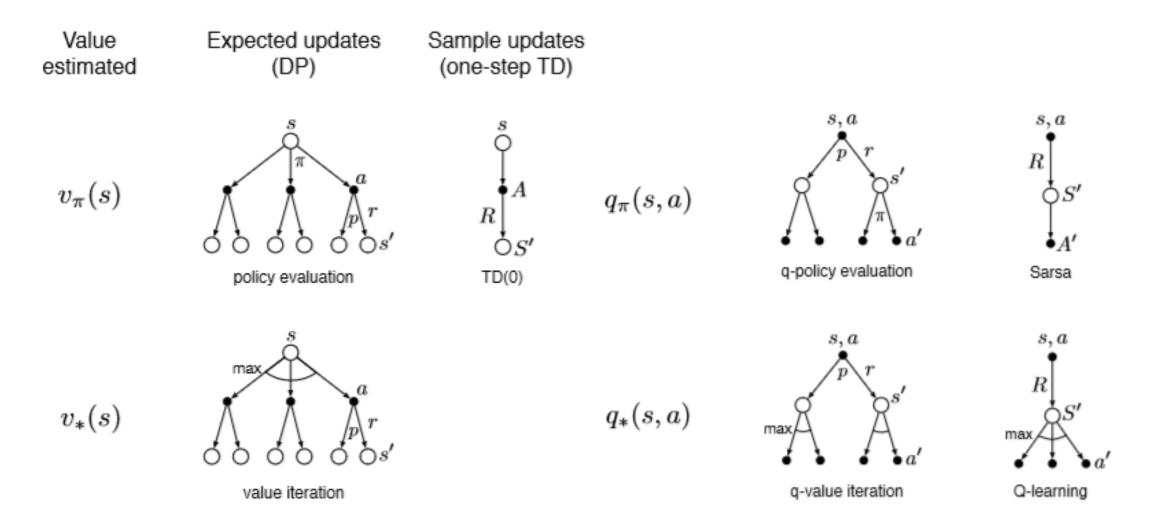
Temporal Difference

- Estimates based on other learned estimates without waiting final outcome
- Bootstrapping
 - Q-Learning and SARSA are 1-step TD (lookahead of 1 step)
 Note also that Q-learning is exactly the same as dynamic programming in deterministic MDPs
 - TD error measures difference between:
 - Estimated value of s_t
 - Better estimate $T_{t+1} = R_{t+1} + \gamma V(s_{t+1})$

$$\delta_t = R_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

- TD error at each time is the error in estimate made at that time
 - Depends on next state and reward, so not available until *t+1*

Expected VS Sampled



Expected TD

- Like Q-learning, except that instead of max uses expected value
 - Takes into account how likely each action is under current policy $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[R_{t+1} + \gamma E_{\pi}[Q(s_{t+1}, a_{t+1})|s_{t+1}] - Q(s_t, a_t)]$ $\leftarrow Q(s_t, a_t) + \alpha[R_{t+1} + \gamma \sum_{x} \pi(a|s_{t+1})Q(s_{t+1}, a) - Q(s_t, a_t)]$
- Moves deterministically in the same direction as Sarsa moves in expectation
 - More complex than Sarsa
 - Removes variance from Sarsa due to random selection of a_{t+1}
- Can be on-policy or off-policy (named **Expected Sarsa**)

Monte Carlo Methods

Monte Carlo methods:

- Sample and average **complete** returns for each state-action pair
- Idea from the definition of value function (expected return)
- Target G_t : return after time t (needs the episode to finish)

Why Monte Carlo?

Estimation involves significant random component (here, complete return)

Can be on-policy or off-policy

On-policy MC Control

Algorithm parameter: small $\varepsilon > 0$ Initialize:

 $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$ $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S$, $a \in \mathcal{A}(s)$

Repeat forever (for each episode):

 $\begin{array}{l} \text{Generate an episode following } \pi: \ S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T \\ G \leftarrow 0 \\ \text{Loop for each step of episode, } t = T-1, T-2, \dots, 0: \\ G \leftarrow \gamma G + R_{t+1} \\ \text{Unless the pair } S_t, A_t \text{ appears in } S_0, A_0, S_1, A_1 \dots, S_{t-1}, A_{t-1}: \\ \text{Append } G \text{ to } Returns(S_t, A_t) \\ Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t)) \\ A^* \leftarrow \arg\max_a Q(S_t, a) \qquad (\text{with ties broken arbitrarily}) \\ \text{For all } a \in \mathcal{A}(S_t): \\ \pi(a|S_t) \leftarrow \begin{cases} 1-\varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases} \end{aligned}$

Off-Policy Evaluation

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DI ROMA

- Happens at policy evaluation: both target and behavior policies are fixed
 - Try to estimate v_{π} or q_{π} for target policy π
 - All we have are episodes following another policy *b*
- To use episodes from *b*, require that
 - Every action taken under π is also taken under b
 - $\pi(a|s) > 0 \rightarrow b(a|s) > 0$ (coverage assumption)
 - *b* must be stochastic in states where it is not identical to π
 - Target policy is typically deterministic greedy wrt current estimate
 - Behavior policy remains stochastic (e.g., ϵ -greedy)

Importance Sampling

- Importance sampling:
 - Estimates expected values under a distribution given samples from another
 - Applied to off-policy learning by weighting returns
 - Weight: relative probability of trajectories occurring under both policies
 - Known as importance-sampling ratio
- Relative probability (importance-sampling ratio) is

$$\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(a_k | s_k) p(s_{k+1} | s_k, a_k)}{\prod_{k=t}^{T-1} b(a_k | s_k) p(s_{k+1} | s_k, a_k)} = \prod_{k=t}^{T-1} \frac{\pi(a_k | s_k)}{b(a_k | s_k)}$$

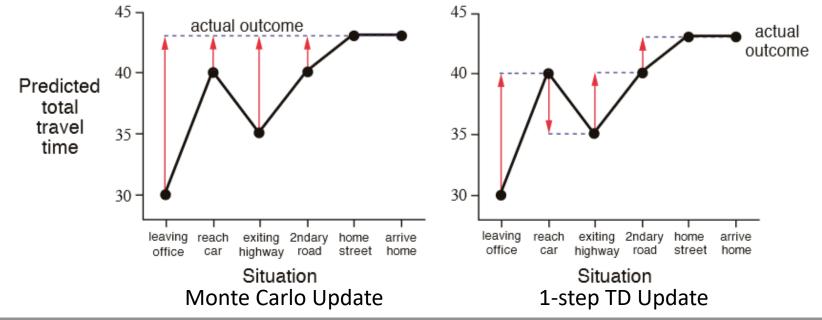
- We want to estimate expected returns of π , with returns G_t from b
 - Ratio transforms them:

$$\mathbb{E}[\rho_{t:T-1}G_t|s_t] = v_{\pi}(s) = \frac{\sum_{t \in T(s)} \rho_{t:\text{Termination}(t)-1}G_t}{|T(s)|}$$

Reinforcement Learning

MC vs TD

- If estimate of V does not change during episode (as in MC methods)
- If V is updated during episode (as in TD(0)) identity is not exact
 - If step size is small it still holds approximately
- TD does better credit assignment and does not need to wait termination
- MC better 'offline' and more stable, TD more incremental

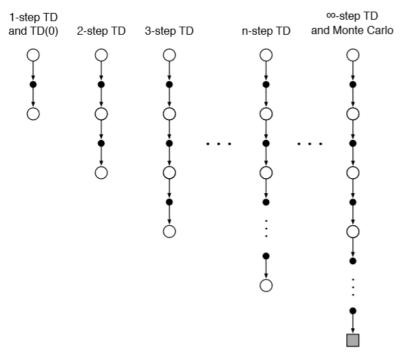


n-step TD Methods

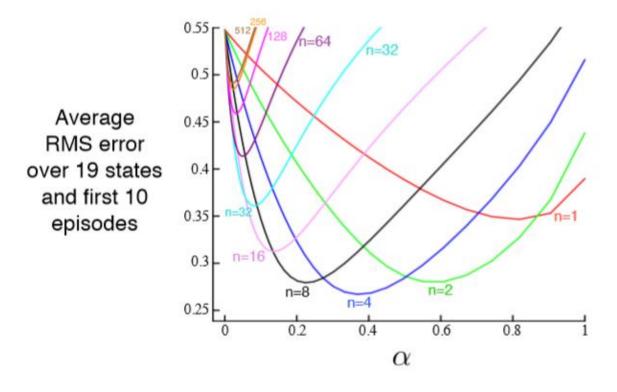
- Unify MC and one-step TD methods
- Generalize them so to smoothly switch among them
- **Motivation**: one-step might not be enough to get significant state changes
- Solution: enable bootstrapping to occur over multiple steps
- *n*-step return:

 $G_{t:t+n} = r_{t+1} + \gamma r_{t+2} + \gamma^{n-1} r_{t+n} + \gamma^n V_{t+n-1}(s_{t+n})$

- For all n, t such that $n \ge 1$ and $0 \le t < T n$
- Approximates full return truncated after n steps
- Needs to wait until it sees r_{t+n} and computed V_{t+n-1} (at t+n)



n-step TD Methods



Can you explain why?

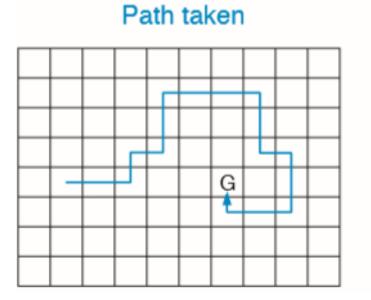
n-step SARSA

Initialize Q(s, a) arbitrarily, for all $s \in S, a \in A$ 1-step Sarsa ∞-step Sarsa n-step Initialize π to be ε -greedy with respect to Q, or to a fixed given policy aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa Expected Sarsa aka Monte Carlo Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$, a positive integer n All store and access operations (for S_t , A_t , and R_t) can take their index mod n+1Loop for each episode: Initialize and store $S_0 \neq$ terminal Select and store an action $A_0 \sim \pi(\cdot|S_0)$. . . $T \leftarrow \infty$ Loop for t = 0, 1, 2, ...: If t < T, then: Take action A_t Observe and store the next reward as R_{t+1} and the next state as S_{t+1} If S_{t+1} is terminal, then: $T \leftarrow t + 1$ else: Ĺ Select and store an action $A_{t+1} \sim \pi(\cdot | S_{t+1})$ $\tau \leftarrow t - n + 1$ (τ is the time whose estimate is being updated) If $\tau \geq 0$: $G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i$ If $\tau + n < T$, then $G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})$ $(G_{\tau:\tau+n})$ $Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[G - Q(S_{\tau}, A_{\tau}) \right]$ If π is being learned, then ensure that $\pi(\cdot|S_{\tau})$ is ε -greedy wrt Q The off-policy version also exists Until $\tau = T - 1$

Reinforcement Learning

n-step SARSA

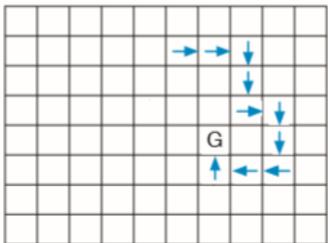
- Reward 0 everywhere except at G
- One-step methods strengthen only last action
- *n*-step methods strengthen last *n* actions



Action values increased by one-step Sarsa

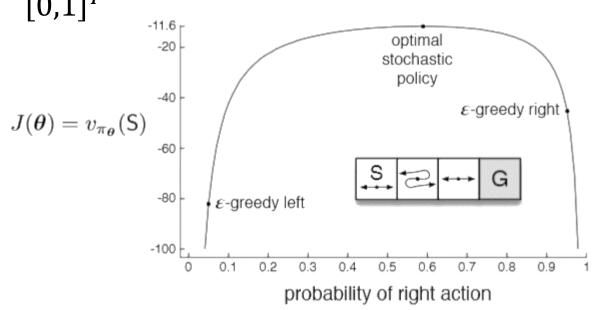


Action values increased by 10-step Sarsa



Action-Value Unstable

- Scenario:
 - Short corridor, reward -1 per step
 - Actions: right and left
 - Actions effect are as usual in first and third states, reversed in second state
 - All states appear identical in their featurization $x(s, right) = [1,0]^T$ and $x(s, left) = [0,1]^T$



 Value-based methods have big oscillations while training

UNIBS.it

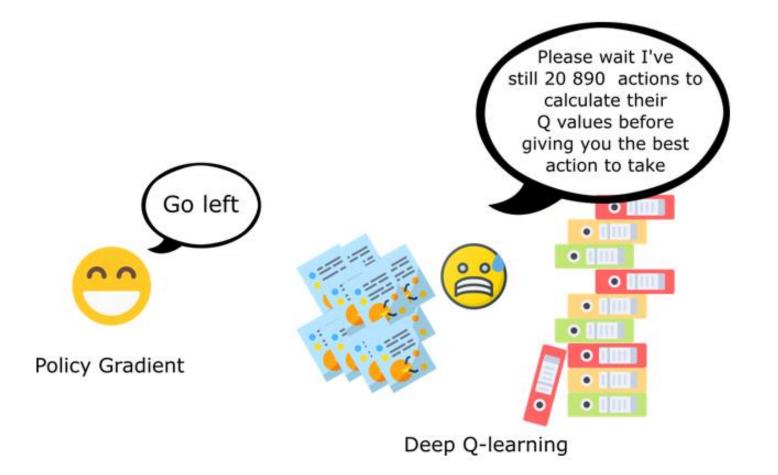
 Choice of actions may change dramatically for arbitrarily small change in action value

Reinforcement Learning

Beyond Action-Value

- Action-value methods
 - Learn values of actions
 - Select actions based on their estimated action-value
 - Difficult for continuous actions
- Policy gradient methods
 - Learn a parameterized policy $\pi(a|s,\theta)$ Parameters θ
 - Select actions without consulting a value function
 - **Requirements:** Policy must be differentiable and should never become deterministic
- Value function may still be used to learn policy parameters
 - Not required for action selection
 - Can be learned as well using approximation, as $\hat{v}(s, w)$ Weights w

Beyond Action-Value



Policy Gradient

- Policy gradient methods learn policy parameters based on $J(\theta) = v_{\pi_{\theta}}(s_0)$
 - Metric with respect to policy parameters
 - Guaranteed to converge to local maximum or global maximum
 - Disadvantage: often converge only to local optimum
- Attempt to maximize performance through gradient ascent

 $\theta_{t+1} = \theta_t + \alpha \nabla \widehat{J(\theta_t)}$

- $\nabla \widehat{J(\theta_t)}$ is a stochastic estimate
 - Its expectation approximates gradient of performance wrt params θ_t
- Methods that learn approximations to both policy and value functions are called actor-critic methods
 - Subset of policy-gradient methods



PG Action Selection

- Action with highest preference are given highest probability of selection
 - E.g., exponential soft-max distribution

$$\tau(a|s,\theta) = \frac{e^{h(s,a,\theta)}}{\sum_{b} e^{h(s,b,\theta)}}$$

- Advantages:
 - Policy can approach deterministic (eps greedy can't)
 - Enables selection of actions with arbitrary probabilities
 - Easy to inject prior knowledge and more effective in high-dimensional action space
 - Action probabilities change smoothly
- Action preferences can be parameterized as desired
 - E.g., NN where parameters are network weights
 - E.g., linear in features: $h(s, a, \theta) = \theta^T x(s, a)$, x(s, a) being computed features
- Policy might be simpler to approximate than action-value functions

PG Challenges

- Performance depends on:
 - Action selection
 - State distribution
 - Both are affected by policy params
- Given a state, effects of policy params can be easily computed
- Effects of state distribution depend on environment
 - They are typically unknown

Theoretical answers are given by policy gradient theorem

$$\nabla J(\theta) \propto E_{\pi} \left[\sum_{a} \nabla \pi(a|s_t) q_{\pi}(s_t, a) \right]$$

- Provides analytic expression for gradient of performance wrt policy params
 - Does not involve derivative of state distribution

REINFORCE

$$\nabla J(\theta) = E_{\pi} \left[\sum_{a} \nabla \pi(a|s_{t},\theta) q_{\pi}(s_{t},a) \right] = E_{\pi} \left[\sum_{a} \pi(a|s_{t},\theta) q_{\pi}(s_{t},a) \frac{\nabla \pi(a|s_{t},\theta)}{\pi(a|s_{t},\theta)} \right] = E_{\pi} \left[q_{\pi}(s_{t},a_{t}) \frac{\nabla \pi(a_{t}|s_{t},\theta)}{\pi(a_{t}|s_{t},\theta)} \right] = E_{\pi} \left[G_{t} \frac{\nabla \pi(a_{t}|s_{t},\theta)}{\pi(a_{t}|s_{t},\theta)} \right]$$
Because $E_{\pi} [G_{t}|s_{t},a_{t}] = q_{\pi}(s_{t},a_{t})$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ (e.g., to 0)

Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \ldots, T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ $\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$

Hence increment is proportional to product of:

• Return and Gradient of probability of taking action taken divided by probability of taking it

$$\theta_{t+1} = \theta_t + \alpha G_t \frac{\nabla \pi(a_t | s_t, \theta_t)}{\pi(a_t | s_t, \theta_t)}$$

- Direction in parameter space that most increases probability of taking that action in that state

 (G_t)

Increases proportional to return and
 Inversely proportional to action probability
 (otherwise frequent actions have advantage)

Reinforcement Learning

Actor-Critic

- Reinforce converges to local minimum
 - It's MC \rightarrow Tends to learn slowly
 - Inconvenient for online or continuing problems
- TD methods help eliminating these problems
- To gain these advantages in case of PG we use actor-critic methods
 - Critic (value function) bootstraps
- Replace full return of REINFORCE with one-step return

$$\begin{split} \theta_{t+1} &= \theta_t + \alpha (G_{t:t+1} - \hat{v}(s_t, w)) \frac{\nabla \pi (a_t | s_t, \theta_t)}{\pi (a_t | s_t, \theta_t)} = \theta_t + \alpha (r_{t+1} + \gamma \hat{v}(s_{t+1}, w) - \hat{v}(s_t, w)) \frac{\nabla \pi (a_t | s_t, \theta_t)}{\pi (a_t | s_t, \theta_t)} \\ &= \theta_t + \alpha \delta_t \frac{\nabla \pi (a_t | s_t, \theta_t)}{\pi (a_t | s_t, \theta_t)} \end{split}$$

1-step Actor-Critic

Input: a differentiable policy parameterization $\pi(a|s,\theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Parameters: step sizes $\alpha^{\theta} > 0, \, \alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $\mathbf{w} \in \mathbb{R}^{d}$ (e.g., to 0) Loop forever (for each episode): Initialize S (first state of episode) $I \leftarrow 1$ Loop while S is not terminal (for each time step): $A \sim \pi(\cdot | S, \theta)$ Take action A, observe S', R $\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$ (if S' is terminal, then $\hat{v}(S', \mathbf{w}) \doteq 0$) $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S, \mathbf{w})$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} I \delta \nabla \ln \pi (A|S, \boldsymbol{\theta})$ $I \leftarrow \gamma I$ $S \leftarrow S'$

Continuous Actions

- PG is practical for large action spaces that are even continuous
- Learn statistics of probability distribution instead of computing learned probabilities for each action
 - E.g., choose actions from a normal distribution
 - Function approximation is done for mean and std

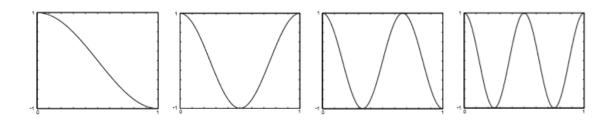
$$\pi(a|s,\theta) = \frac{1}{\sigma(s,\theta)\sqrt{2\pi}} \exp\left(-\frac{\left(a-\mu(s,\theta)\right)^2}{2\sigma(s,\theta)}\right)$$

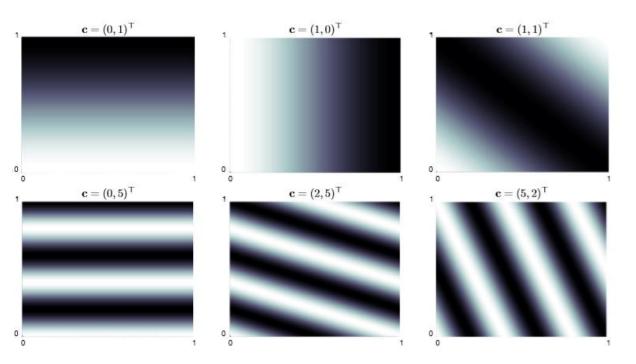
Features in RL

- Features add prior domain knowledge to RL systems
- Correspond to aspects of state space along which generalization is appropriate
- Examples:
 - Polynomials E.g., $x(s) = (1, s_1, s_2, s_1s_2, s_1^2, s_2^2, s_1s_2^2, s_1^2s_2, s_1^2s_2^2)$
 - Fourier Basis
 - Coarse Coding
 - Tile Coding
 - Radial Basis Functions

Fourier Basis

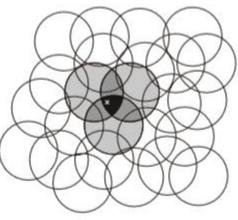
- Easy to use $x_i(s) = \cos(\pi \mathbf{s}^\top \mathbf{c}^i)$
- Perform well in a range of problems
- $s \in [0,1], c \in \{0, ..., n\}$



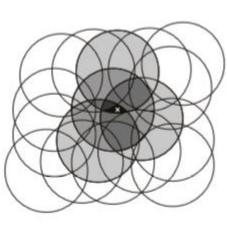


Coarse Coding

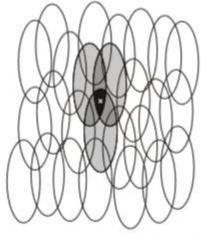
- State space is continuous
- Create 'circles' in state space
- If state is inside a circle, feature is 1, otherwise 0
- Features of this type overlap



Narrow generalization



Broad generalization

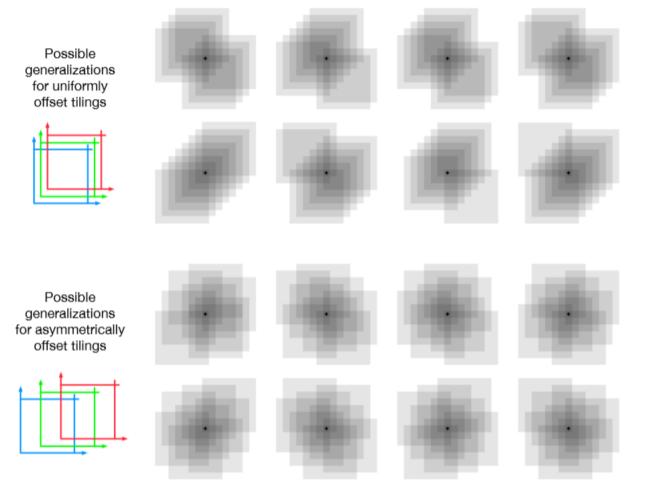


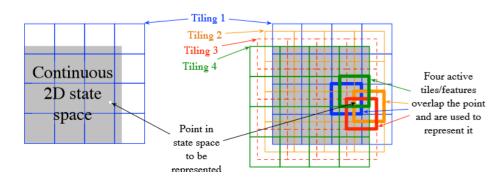
Asymmetric generalization

Reinforcement Learning

Tile Coding

- Form of coarse coding that is flexible and computationally efficient
- More tilings enable generalization outside the same box

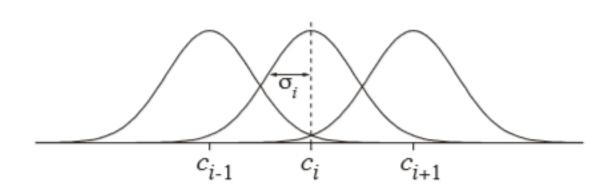


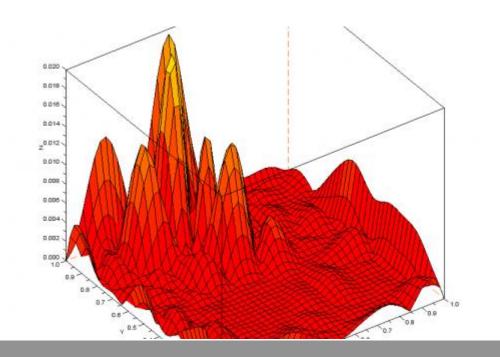


Radial Basis Functions

• Generalize coarse coding to continuous features

$$x_i(s) \doteq \exp\left(-\frac{||s-c_i||^2}{2\sigma_i^2}\right)$$





Reinforcement Learning