Intelligenza Artificiale

(Fondamenti di Intelligenza Artificiale) A.A. 2023-2024

Prof. Alfonso E. Gerevini

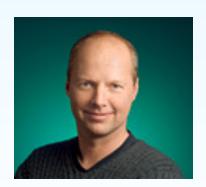
Dipartimento di Ingegneria dell'Informazione

Università degli Studi di Brescia

Materiale didattico corso IA

- Testo di riferimento: "Intelligenza Artificiale: un Approccio Moderno", Russell e Norvig, Pearson-Prentice Hall (dalla terza edizione)
- Dispense, articoli, software distribuito dal docente e esercitatori
- Sito Libro: http://aima.cs.berkeley.edu/
- **Sito corso**: <u>artificial-intelligence.unibs.it/didattica-IA/</u> lucidi, software, ecc. (vecchio sito: zeus.ing.unibs.it/ia)

Artificial Intelligence



Taught by Sebastian Thrun and Peter Norvig

Diversi corsi online. Ad es: https://www.udacity.com/

Norvig (direttore ricerca Google)

Thrun (prof. a Unv. of Stanford)

Modalità Esame

- Prova finale scritta
- Prova orale o elaborato
- Prova in itinere sulla parte prima parte del cprogramma

Intelligenza Artificiale a Brescia

- Diversi docenti, ricercatori, studenti di dottorato di ricerca
- Il vostro docente di IA svolte ricerca in IA da tre decenni (gruppo di 20 ricercatori e numerosi progetti di ricerca sia si base che applicativa)
- Collaborazioni con importanti centri di ricerca internazionali: NASA, IBM, Università Europee, Americane, Canadesi, Australiane
- Molte opportunità di tesi di laurea (iniziare a informarsi in anticipo)

Applicazioni di IA?

Moltissimi settori: Informatica (sistemi operativi, programmazione, reti, user interface, spam, ecc.), finanza, giochi, agenti internet, sicurezza, aviazione, sanità (ad es: diagnosi e terapia medica), robotica, servizi telefonici e smartphone, trasporti, commercio elettronico, elaborazione di immagini, apparecchiature industriali e elettrodomestici, musica, ecc. ecc.

. . .

•Vedi, per es.

http://en.wikipedia.org/wikiApplications of artificial intelligence

L'inizio dell'Intelligenza Artificiale

Antiche radici filosofiche e matematiche:

— Tra i primi, R (1646-1716) s del ragioname

Come disciplina s

Turing propon

- Samuel scrive

Ufficialmente Nas

ricercatori di M vita all*"Artific*

Scopo secondo

John McCarthy (1927-2011)

DA WIKIPEDIA: John McCarthy è stato un informatico statunitense che ha vinto il <u>Premio Turing</u> nel 1971 per i suoi contributi nel campo dell'Intelligenza Artificiale. È stato l'inventore del termine "<u>Intelligenza Artificiale</u>" nel 1955 (in una proposta per creare un gruppo di lavoro al Dartmouth College nell'estate 56). McCarthy si distingueva per le sue conoscenze di <u>logica matematica</u> in relazione all'Intelligenza Artificiale. Una scuola di pensiero diversa, nata al MIT...

- •Tra i fondatori di MIT lab of computer science
- •Inventò il linguaggio di programmazione Lisp
- •Nel 1961 propone l'idea del time sharing nei sistemi operativi

Obiettivi Generali dell'IA

Obiettivo scientifico:

• Studiare il comportamento intelligente indipendentemente dal soggetto (umano, animale, meccanico)

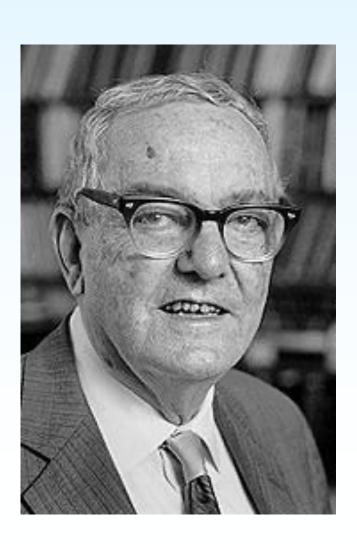
Obiettivo ingegneristico:

• Sviluppo di macchine dotate di comportamenti simili a quelli dell'uomo (o migliori!) e studio delle applicazioni

"Può Pensare una Macchina?"

Questione controversa (acceso dibattito ancora aperto)

- "Può"
 - Quando? Ora o in un futuro imprecisato?
 - In principio o in pratica?
- "Macchina" (in senso astratto?)
 - Processo automatizzato (meccanico, elettronico, biologico, chimico, simbolico, matematico)


"Può Pensare una Macchina?"

(Importanza della macchina)

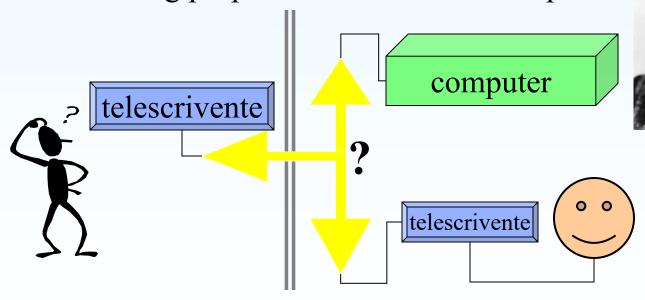
Almeno due visioni contrastanti:

- •L'attività del pensiero può avvenire solo in "macchine umane" fatte di proteine (J. Searle 1980-92)
- •L'intelligenza a livello umano dipende strettamente da <u>aspetti</u> <u>fisiologici propri dell'uomo</u> e dell'<u>ambiente</u> in cui agisce, <u>troppo complessi</u> da riprodurre in una macchina (Lakoff 1987, Winograd e Flores 1986, e altri)
- •Un sistema in grado di <u>manipolare "simboli" (numeri, lettere, formule, ecc.)</u>, come un computer, può ragionare e compire azioni intelligenti, *indipendentemente da come sono realizzati i simboli!* (Newell e Simon 1976, e molti altri)

Herbert Simon (1916-2001)

DA WIKIPEDIA: Simon è stato

tra i padri fondatori di molte tra le più importanti discipline scientifiche, inclusa l'<u>intelligenza</u> <u>artificiale</u>, l'elaborazione dell'<u>informazione</u>, la teoria dell'<u>organizzazione</u>, il <u>problem solving</u>, i <u>sistemi complessi</u> e la <u>simulazione</u> al computer della scoperta scientifica.


Il genio e l'influenza di Simon sono evidenziati dai molti premi ricevuti, tra i quali: il premio Turing della Association for Computing Machinery (1975) insieme a Newell per aver dato "contributi fondamentali all'intelligenza artificiale, alla psicologia cognitiva e al trattamento delle liste" (1975); il Premio Nobel per l'economia "per le sue pioneristiche ricerche sul processo decisionale nelle organizzazioni economiche" (1978); la Medaglia Nazionale per la Scienza (1986); e il premio della American Psychological Association per gli eccezionali contributi alla psicologia (1993).

"Può Pensare una Macchina?"

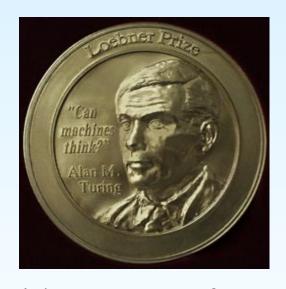
(il test di Turing 1950)

• "Pensare"...

Alan Turing propone una definizione empirica:

L'aspetto fisico non è importante per simulare l'intelligenza!

Il Test di Turing


Versione estesa:

- Interazione con ambiente attraverso telecamere (visione artificiale)
- Possibilità di scambiare oggetti (arti robotici)

Capacità richieste per superare il test:

- Elaborazione linguaggio naturale
- Rappresentazione della conoscenza
- Ragionamento automatico
- Apprendimento automatico
- Visione artificiale e robotica

Gara Test di Turing

Nel 1990 Hugh Loebner e il Cambridge Center for Behavioral Studies iniziano una competizione sul test di Turing:

Primo premio \$100.000 + una medaglia d'oro.

Secondo 25.000, terzo 2-4000 (ogni anno)

Winner 2013: http://www.mitsuku.com (provare!)

http://www.loebner.net/Prizef/loebner-prize.html

Due Forme di Intelligenza Artificiale

IA Forte (completa/generale): intelligenza di una ipotetica macchina in grado di mostrate <u>tutte</u> le capacità intellettive/cognitive di un essere umano

- Vicino a obiettivo iniziale dell'IA
- Argomento amato da fantascienza e futurologi ...
- Possibile nel futuro? Quando?

IA Debole (ristretta/applicativa): intelligenza di una macchina che risolve una classe di problemi specifici attraverso <u>alcune</u> capacità cognitive

- Spesso intelligenza come *razionalità* (fare la cosa "giusta")
- Molti ambiti applicativi e sistemi funzionanti nel mondo reale!

16

Alcuni Riferimenti Bibliografici

- J. Searle, "Menti Cervelli e Programmi", Clup-Clued, 1984
- "La Filosofia degli Automi", collezione di articoli, Superuniversale Boringhieri, 1986
- T. Winograd e F. Flores, "Calcolatori e Conoscenza", Mondadori, 1987
- S. Russell, P. Norvig, "Intelligenza Artificiale: un approccio moderno", Capp. 1-26, UTET, 1998
- E. Feigenbaum, J. Feldman, "Computers and Thought", McGraw-Hill, 1963
- R. Kurzweil, "The Age of Intelligent Machines", MIT Press, 1990
- H. Simon, "The Science of Artificial", MIT Press, 1981
- J. Haugeland, "Artificial Intelligence: The Very Idea", MIT Press, 1985
- P. Johnson-Laird, "The Computer and the Mind: An Introduction to Cognitive Science", Harvard University Press, 1988

Approcci dell'IA

Oggetto di studio

- pensiero (ragionamento) e aspetti cognitivi
- comportamento intelligente

Valutazione delle teorie

- prestazioni umane
- prestazioni "razionali"

Razionalità: concetto ideale di intelligenza

Un sistema è razionale se fa sempre la cosa "giusta"

Due definizioni

(Pensiero e Ragionamento)

(1) Studio di sistemi che pensano come gli esseri umani

"[Automazione] di attività che associamo al pensiero umano, attività come prendere decisioni, risolvere problemi, apprendere, ..." (Bellman, 1978)

(2) Studio di sistemi che pensano razionalmente

"Studio delle facoltà mentali attraverso l'uso di modelli [matematici/ingegneristici] computazionali" (Charniak e McDermott, 1985)

Altre due definizioni

(Comportamento)

(3) Studio di sistemi che agiscono come esseri umani

"Studio di come far fare ai computer cose che, attualmente, le persone fanno meglio" (Rich e Knight, 1991)

(4) Sistemi che agiscono razionalmente

"Ramo dell'informatica che si occupa di automatizzare un comportamento intelligente" (Luger e Stubblefielg, 1993)

IA = "Pensare/Agire Umanamente"

- E' necessario possedere una *teoria* di come pensa l'uomo (non facile!)
- Campo di studio delle Scienze Cognitive
 - Sviluppare una teoria del pensiero/ragionamento
 - Realizzare un modello computazionale/programma della teoria (ruolo dell'IA!)
 - Utilizzare il modello per validare la teoria (esperimenti di tipo psicologico)
- Test di Turing per valutare il comportamento intelligente

IA = "Ragionare/Agire Razionalmente"

Vengono utilizzati modelli matematici per definire e compiere "inferenze/azioni corrette"

- Esempio: inferenze logiche
- Inizio logica: sillogismi di Aristotele (uno dei primi filosofi che cerca di codificare il "pensare correttamente")
- La logica formale (inizio 1900) è usata in molti sistemi di IA
- Ragionare razionalmente ______ agire razionalmente
- NB: un agente razionale può anche compiere azioni "riflessive", che non coinvolgono ragionamento

Discipline collegate all'IA

- Filosofia (intelligenza, conoscenza, ragionamento, apprendimento, linguaggio, ecc..)
- Matematica (logica, probabilità, statistica, teoria degli algoritmi, ecc..)
- Psicologia (modelli cognitivi, esperimenti psicologici)
- Informatica (software, hardware)
- **Linguistica** (sintassi, semantica e pragmatica del linguaggio naturale, rappresentazione della conoscenza)
- **Economia** (teoria delle decisioni, teoria dei giochi, ricerca operativa)
- Neuroscienze (neuroni e l'elaborazione delle informazioni nel cervello)

Per approfondimenti sui fondamenti e storia/evoluzione dell IA vedi "Intelligenza Artificiale: un Approccio Moderno", Russell e Norvig, Capitolo 1

Aree Tradizionalmente Studiate in IA

VOCE sintesi e riconoscimento

VISIONE artificiale

Elaborazione LINGUAGGIO NATURALE

ROBOTICA mobile cognitiva

APPRENDIMENTOautomatico

RAGIONAMENTO AUTOMATICO

Ingegneria della CONOSCENZA

Ragionamento Automatico

Ci sono vari "tipi" di ragionamento, ad esempio:

- Logico matematico (dimostrazione automatica di teoremi)
- Basato sulla somiglianza e analogia
- Tassonomico (gerarchie di concetti)
- Probabilistico/statistico/incerto
- Diagnostico e causale (basato su modelli o sul "senso comune")
- Temporale (previsioni, spiegazioni, pianificazioni, ecc.)
- Spaziale (topologico, geometrico, morfologico, ecc.)

Sistemi basati su conoscenza

Insieme di tecniche per *acquisire*, *formalizzare*, *organizzare* conoscenza su cui poi applicare metodi di *ragionamento automatico*.

Approccio dell'*Ingegnere della Conoscenza in IA*

DATI + PROGRAMMI (approccio classico)

CONOSCENZA + RAGIONAMENTO (approccio IA)

IA Debole/Ristretta: Impatto Applicativo

- Anni 80: molte applicazioni molto significative: i Sistemi Esperti
- <u>Fine anni '80 e anni '90</u>: **inverno dell'IA**, riduzione finanziamenti, attività di sviluppo industriale, attività di ricerca, scetticismo diffuso **Motivi**: promesse inattese + difficoltà tecnologiche oggettive
- <u>Ultimo decennio</u>: *fortissimo rilancio dell'IA e nuove potenti applicazioni. Perché? Cosa è cambiato?*
 - Potenza computazionale enormemente aumentata, cloud computing
 - Enorme quantità di dati disponibili (Big Data) e Internet of Things
 - Progressi nella ricerca di base dell'IA
 - Grossi investimenti di aziende (Google, IBM, Amazon, Facebook, ecc.)
 - >Grande sviluppo di applicazioni che usano IA

Tre risultati dirompenti di IA: <u>IBM</u> <u>Watson</u>

- -Nel 2011 sconfigge campioni umani nel gioco televisivo Jeopardy
- -Usa "conoscenza" ad ampio spettro, comprensione e generazione di linguaggio naturale, forme di ragionamento e apprendimento
- -Hardware potente e costoso (RAM di 16 Terabyte, > 1M\$)
- -Analizza dati da molte fonti, pari a 1 milione di libri al secondo
- -"Customizzabile" per diverse applicazioni specifiche:
 - Sanità (supporto alle decisioni in diagnosi e terapie)
 - Servizi al cliente "ho queste esigenze, che prodotto mi consigli?"
 - Call center per grandi aziende (tecnico, commerciale)
 - Assistenza nei processi legali

IBM intendeva ricavare da Watson 10 miliardi dollari in 10 anni!

Tre risultati dirompenti di IA:

Google Car

- Nel 2004-05-07 competizioni finanziate DARPA sulla guida autonoma
- Nel 2007 con percorsi cittadini con traffico, semafori, pedoni altre auto:
 6 team di ricerca completano la sfida
- Capacità di visione artificiale, pianificazione di percorsi, ecc.
- Il vincitore (Thurn di Stanford) lavora con Google sulla guida autonoma
- Nel 2012 percorsi 300000 Km autonomamente da una Google car.
- Tesla inizia a produrre auto a guida autonoma in USA, ma anche altri.
 L'industria automobilistica si concentra in "massa" sulla guida autonoma
- In futuro probabile forte impatto positivo di tipo:
 - Sociale (strade più sicure in USA 90% incidenti stimati per errore umano)
 - Urbanistico (ad. es: parcheggi automatizzati)
 - Nuove modalità di trasporto? (car "on demand". Convogli cooperanti)

Tre risultati dirompenti di IA: AlphaGo

- –Nel 2015-16 DeepMind sviluppa **AlphaGo**, un programma che batte il campione umano del gioco
- -GO molto più difficile degli scacchi!
- -AlphaGo usa algoritmi di "deep learning" e tecniche di ragionamento automatico
- -DeepMind piccola azienda acquistata da Google
- -Google investe fortemente in ricerca e applicazioni di IA legate al machine learning

IA nella Robotica (esempi)

- Auto a guida autonoma (perfezionabili): Tesla, GoogleCar, ...
- Spostamento di pacchi da bancali
- Robot YASKAWA (industrial Perception)
- Robot trasportatori di merce in grandi depositi:
- Il caso AMAZON (Kiva robots)
- Produzione e assemblaggio più efficiente e flessibile
 - Il caso Stabilimento Tesla
- Fast food, camerieri e distributori di vivande
- Preparazione <u>Amburger</u> (Momentum Machines) e <u>Camerieri</u> (Pizza Hut)
- Robot umanoidi (entertainment)
 - Atlas BostonDinamics e Honda Asimo
- Robot autonomi per esplorazioni (NASA Mars Rovers), sorveglianza e sicurezza (Droni)

IA nella medicina (esempi)

- Sviluppo di nuovi farmaci più efficaci e personalizzati
- Interpretazione di immagini radiologiche
- Robot infermieri in ospedali (trasporto di medicine e altro)
- Supporto alle decisioni cliniche nella diagnosi e terapia
- Forti investimenti di IBM (Watson)
 - In Giappone IBM Watson salva una donna con rara forma di leucemia
 - In 10 minuti confronta le informazioni del paziente con database di 20 milioni di articoli scientifici e casi precedenti

IA nelle professioni (esempi)

- Supporto al marketing e vendite mirate in internet
- Applicazioni finanziare e algoritmi di trading in borsa
- Generatori automatici di rapporti in linguaggio naturale (ad es: Quill di "Narrative Science"):
- News
- Finanza e borsa
- Legge e attività legali
- Rapporti tecnici su processi aziendali
- Scrittori automatici di articoli giornalistici
- Per riviste (Forbes) e quotidiani (Quill di "Narrative Science")

IA nelle vita di tutti i giorni (esempi)

- Assistenti personali con interazione in linguaggio naturale
 - Apple Siri (iPhone)
- Analisi, interpretazione e organizzazione immagini/fotografie
 - Fotografie collegate (stessa persona?), tipologie di foto
- **Traduttori** di lingua automatici (Google traduce 500 coppie di linguaggi; affidabile per testi semplici)
- Sistemi di suggerimento di musica, prodotti e attività varie graditi
- Filtri posta elettronica anti spam e motori di ricerca web evoluti
- Videogame
- **Domotica** intelligente

•

IA nel mondo della ricerca

Che sforzi e risorse sono in gioco nell'industria e università?

- In USA nel 2015 le aziende spendono **8,5 miliardi di dollari** in accordi e investimenti su IA (The Economist)
- Tutti i giganti della tecnologia (Facebook, Microsoft, Google, Amazon, IBM) hanno **centri di ricerca** per applicazioni di IA.
- Forte richiesta di talenti dell'IA: molti professori famosi, ricercatori e studente di dottorato reclutati dalle aziende
- Tutte le principali università nel mondo hanno gruppi di ricerca e attività didattiche in IA, anche l'Università di Brescia (UniBS)
 - UniBS tra i leader internazionali della ricerca in alcuni campi dell'IA
 - Ampio gruppo di ricerca specializzato su alcune temetiche

Che applicazioni nel prossimo futuro?

Oltre all'evoluzione delle applicazioni di IA correnti:

- •Robot umanoidi autonomi che interagiscono con l'uomo
- •Droni autonomi e collaborativi per molte applicazioni civili
- •Diffusione di **auto a guida autonoma** (oltre a Tesla e GoogleCar) con nuovi modi di usarla e parcheggiarla
- •Diagnosi e terapie mirate e più efficaci
- •Diffusione di Call center automatizzati
- •Assistenti personali più evoluti
- •Sempre più **Fabbriche intelligenti** (ottimizzazione produzione, manutenzione, logistica, ecc.)

•

E molte altre nuove applicazioni ora persino inimmaginabili!

Impatto dell'IA nei prossimi anni

- L'IA pone sfide scientifiche affascinanti e consente applicazioni tecnologiche che nell'immediato futuro avranno un forte impatto
- Già oggi l'IA è presente in moltissimi settori; la sua diffusione su vasta scala sta aumentando sempre di più ...
- Diversi fattori contribuiscono all'esplosione di applicazioni in corso
 - Progressi scientifici nella ricerca in IA di base e ingegneristica
 - Enorme vastità di dati disponibili (in aumento)
 - Ingenti investimenti industriali nel settore e strategie di business

....

La diffusione su vasta scala dell'IA aiuterà l'uomo a vivere meglio, se opportunamente regolamentata a livello politico e etico.