
Model-Based

Reinforcement Learning Model-Based RL 1

Roberto Capobianco

Reinforcement Learning

Model Based RL

Reinforcement Learning Model-Based RL 2

• Model-based RL: emphasizes planning
• Model is not given, but learned

• Model-free RL: emphasizes learning
• Model: anything that an agent can use to predict how environment will respond to

actions
• Distribution models: describe all possibilities and their probabilities
• Sample models: produce just one possibility sampled according to probabilities

• Different but also very similar
• Both rely on value function
• Both use lookahead to future events
• Both use backed-up values

Model

Reinforcement Learning Model-Based RL 3

• Models can be used to mimic or simulate experience

• Sample models:
• produce a possible transition, given a starting state and action
• could produce an entire episode, given starting state and policy

• Distribution model
• generates all possible transitions weighted by probabilities
• could generate all possible episodes and their probabilities

• In any case, model is used to simulate environment and produce simulated
experience

Planning VS Learning

Reinforcement Learning Model-Based RL 4

• Planning uses simulated experience generated by a model VS real experience generated by the environment
• Performance is assessed differently and experience can be generated with different flexibility
• Learning methods can often be substituted for update steps of planning methods

• Planning can be done online: while interacting with environment
• Interaction may change the model, interacting with planning
• Computation resource divided between model learning and decision making

• Experience can improve the model (model-learning)
• Experience can improve value function and policy using RL (direct RL)
• Policy and value function can be improved indirectly via model (indirect RL)

Q-Planning

Reinforcement Learning Model-Based RL 5

• Example: Q-Planning
• converges to optimal policy for the model under same conditions of one-step Q-learning

• Indirect methods often make full use of limited experience
• Achieve better policy with fewer environmental interactions

• Direct methods are often simpler and not affected by biases in model design

Dyna-Q

Reinforcement Learning Model-Based RL 6

• Uses planning, acting, model-learning and direct RL
• Planning: one-step tabular Q-planning
• Direct RL: one-step tabular Q-learning
• Model-learning: table based

• Record transitions and assume they deterministically happen
• Returns last observed next state and reward as prediction for state-action pairs
• Queries can be done only against experienced state-action pairs

• Conceptually everything happens in parallel and simultaneously
• For implementation, we specify order

Dyna-Q

Reinforcement Learning Model-Based RL 7

Dyna-Q Example

Reinforcement Learning Model-Based RL 8

• After first episode planning can do its job

Model Inaccuracies

Reinforcement Learning Model-Based RL 9

• In general models may be incorrect because environment is stochastic
• Only limited number of samples is observed
• Maybe we used also function approximation that generalized badly
• Maybe environment changed

• If model is incorrect, planning generally computes suboptimal policy

• Suboptimal policy may lead to discovery and correction of error
• Happens if model is optimistic (predicts greater reward or better state)
• Planned policy attempts to exploit these opportunities
• Doing so it discovers that they do not exist
• If environment gets better, policy does not reveal improvement

Model Exploration

Reinforcement Learning Model-Based RL 10

• A different version of exploration Vs exploitation
• Exploration: trying actions that improve the model
• Exploitation: behaving optimally given current model
• We want to improve model without degrading performance

• Dyna-Q+ uses one heuristic:
• Keep track for each state-action pair of how many steps

elapsed since last real visit
• Longer time → greater chance it might have changed
• Encourage behavior that tests untried actions

Focused Updates

Reinforcement Learning Model-Based RL 11

• In Dyna-Q state-action pairs are selected uniformly
• We can do better by focusing
• Avoid wasteful updates
• Useful updates grow as planning progresses

• Intuition: we want to do backward updates for states whose value change
• Value depends on lookahead in the future
• Actions leading into states that have better value need to be updated
• Their predecessors as well might have changed

• Idea: prioritize updates according to their urgency (prioritized sweeping)
• Queue of state-action pairs whose value would change a lot
• Prioritize by the size of change
• Efficiently propagate effect on each of predecessor pairs

• If effect is larger than a threshold, pair is also inserted in queue with priority

Prioritized Sweeping

Reinforcement Learning Model-Based RL 12

Trajectory Sampling

Reinforcement Learning Model-Based RL 13

• DP performs updates on each state
• Problematic on large tasks: many states might be irrelevant

• Alternative:
• Sample state or state-action space according to a distribution

• Uniformly as Dyna-Q is bad (as for the full state space selection)

• We can use on-policy distribution (observed following policy)
• Easy to generate
• Sample actions given by policy
• Called trajectory sampling

• Real-time DP: on-policy trajectory sampling version of value iteration (DP)
• Converges to optimal policies for discounted finite MDPs with exploring starts
• For certain types of problems it’s guaranteed to find optimal policy on

relevant states without visiting irrelevant states infinitely

Decision Time Planning

Reinforcement Learning Model-Based RL 14

• Background planning (e.g., Dyna)
• Not focused on current state
• Gradually improve policy on the basis of simulated experience from model
• Planning plays a part well before an action is selected

• Decision-time planning
• Begin planning after encountering each new state
• Evaluates action choices leading to different predicted states
• Use simulated experience to select an action for the current state
• Values and policy are updated specifically for current state

• Can be blended together

Heuristic Search

Reinforcement Learning Model-Based RL 15

• Classical AI state-space planning
• For each state met a large tree of possible continuations is evaluated
• Approximate value function applied to leaf nodes and backed up
• Best of values after back-up is chosen as current action
• All backed-up values are (generally) discarded

• Value function generally hand-designed and never changed
• This would be natural to do however
• Greedy policies similar to one step heuristic search without saving back-up

• Focused on current state (memory and computational resources are focused)

Heuristic Search

Reinforcement Learning Model-Based RL 16

• Limit case:
• Use exactly methods of heuristic search to construct tree
• Perform individual one-step updates from bottom up
• In tabular case and with ordered updates: exactly like depth-first heuristic search
• No multi-step update, but focused multiple one-step updates

Roll-out Algorithms

Reinforcement Learning Model-Based RL 17

• Decision-time planning algorithms
• Uses MC control applied to simulated trajectories starting at current state

• Average returns of many simulated trajectories with each possible action and then
following rollout policy

• When estimate accurate, highest value action is executed

• Unlike MC methods does not estimate complete optimal action-value function
• Produces MC estimates of action values only for each current state and given policy

• Make immediate use of action-value estimates and then discard them
• Generally no long-term memory of values and policies

• Maximizes estimate of Q for s and each action to improve upon rollout policy
• Policy improvement theorem holds
• Not looking for optimal policy

Monte-Carlo Tree Search

Reinforcement Learning Model-Based RL 18

• Rollout algorithm BUT accumulating value estimates
• Estimates direct simulations toward highly-rewarding trajectories
• Executed at each new state to select agent’s action just for that state
• Multiple focused simulations from current state to terminal state

• Can be truncated as we have seen for RL

• Doesn’t have to retain approximate V functions or policies
• Although in many implementations it does (it’s useful)

• Tree policy: select actions that look promising based on
simulated trajectories
• Could be eps-greedy or UCB selection rule

• No values are stored for states beyond the tree

Summary

Reinforcement Learning Model-Based RL 19

