Model-Based

Roberto Capobianco

Reinforcement Learning

Model Based RL

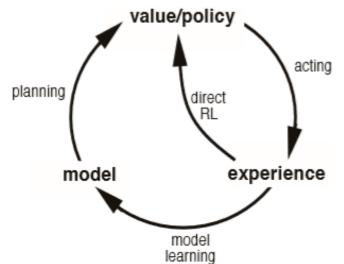
- Model-based RL: emphasizes planning
 - Model is not given, but learned
- Model-free RL: emphasizes learning
 - Model: anything that an agent can use to predict how environment will respond to actions
 - Distribution models: describe all possibilities and their probabilities
 - Sample models: produce just one possibility sampled according to probabilities
- Different but also very similar
 - Both rely on value function
 - Both use lookahead to future events
 - Both use backed-up values

Model

- Models can be used to mimic or simulate experience
- Sample models:
 - produce a possible transition, given a starting state and action
 - could produce an entire episode, given starting state and policy
- Distribution model
 - generates all possible transitions weighted by probabilities
 - could generate all possible episodes and their probabilities
- In any case, model is used to simulate environment and produce simulated experience

Planning VS Learning

- Planning uses simulated experience generated by a model VS real experience generated by the environment
- Performance is assessed differently and experience can be generated with different flexibility
- Learning methods can often be substituted for update steps of planning methods
- Planning can be done online: while interacting with environment
- Interaction may change the model, interacting with planning
- Computation resource divided between model learning and decision making
- Experience can improve the model (model-learning)
- Experience can improve value function and policy using RL (direct RL)
- Policy and value function can be improved indirectly via model (indirect RL)



UNIBS.it

Q-Planning

- Indirect methods often make full use of limited experience
 - Achieve better policy with fewer environmental interactions
- Direct methods are often simpler and not affected by biases in model design
- Example: Q-Planning
 - converges to optimal policy for the model under same conditions of one-step Q-learning

Loop forever:

- 1. Select a state, $S \in S$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S'

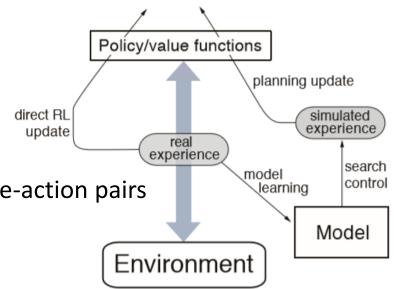
3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$

Dyna-Q

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DI ROMA

- Uses planning, acting, model-learning and direct RL
 - Planning: one-step tabular Q-planning
 - Direct RL: one-step tabular Q-learning
 - Model-learning: table based
 - Record transitions and assume they deterministically happen
 - Returns last observed next state and reward as prediction for state-action pairs
 - Queries can be done only against experienced state-action pairs

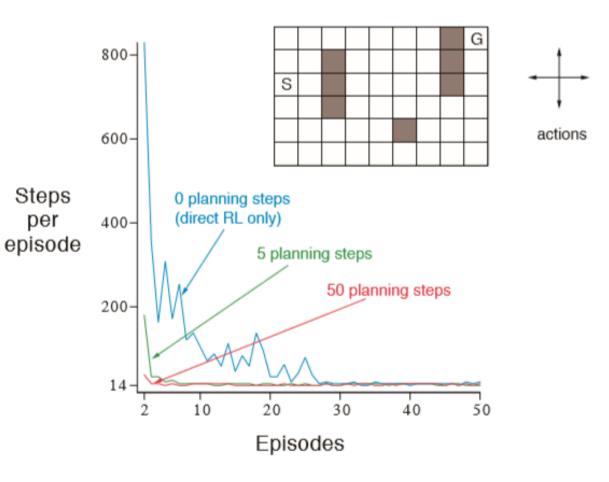
• For implementation, we specify order



Dyna-Q

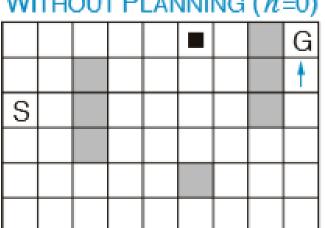
Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Loop forever:

- (a) $S \leftarrow \text{current}$ (nonterminal) state
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) Q(S, A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:
 - $S \leftarrow$ random previously observed state
 - $A \leftarrow$ random action previously taken in S
 - $R, S' \leftarrow Model(S, A)$
 - $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) Q(S, A)]$



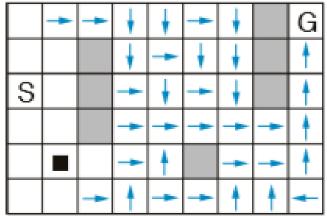
Dyna-Q Example

After first episode planning can do its job •



WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)



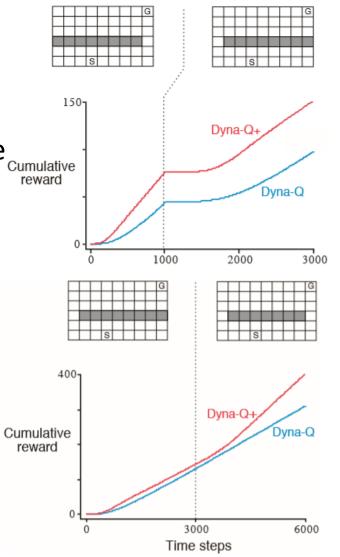
Model Inaccuracies

- In general models may be incorrect because environment is stochastic
 - Only limited number of samples is observed
 - Maybe we used also function approximation that generalized badly
 - Maybe environment changed
- If model is incorrect, planning generally computes suboptimal policy
- Suboptimal policy may lead to discovery and correction of error
 - Happens if model is optimistic (predicts greater reward or better state)
 - Planned policy attempts to exploit these opportunities
 - Doing so it discovers that they do not exist
 - If environment gets better, policy does not reveal improvement

Model Exploration

- A different version of exploration Vs exploitation
 - Exploration: trying actions that improve the model
 - Exploitation: behaving optimally given current model
 - We want to improve model without degrading performance

- Dyna-Q+ uses one heuristic:
 - Keep track for each state-action pair of how many steps elapsed since last real visit
 - Longer time \rightarrow greater chance it might have changed
 - Encourage behavior that tests untried actions



Focused Updates

- In Dyna-Q state-action pairs are selected uniformly
 - We can do better by focusing
 - Avoid wasteful updates
 - Useful updates grow as planning progresses
- Intuition: we want to do backward updates for states whose value change
 - Value depends on lookahead in the future
 - Actions leading into states that have better value need to be updated
 - Their predecessors as well might have changed
- Idea: prioritize updates according to their urgency (prioritized sweeping)
 - Queue of state-action pairs whose value would change a lot
 - Prioritize by the size of change
 - Efficiently propagate effect on each of predecessor pairs
 - If effect is larger than a threshold, pair is also inserted in queue with priority

Prioritized Sweeping

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Loop forever:

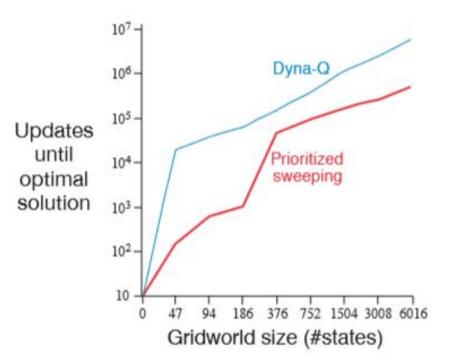
- (a) $S \leftarrow \text{current}$ (nonterminal) state
- (b) $A \leftarrow policy(S, Q)$
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Model(S, A) \leftarrow R, S'$
- (c) $P \leftarrow |R + \gamma \max_a Q(S', a) Q(S, A)|.$
- (f) if $P > \theta$, then insert S, A into PQueue with priority P
- (g) Loop repeat n times, while PQueue is not empty:

 $S, A \leftarrow first(PQueue)$

 $R, S' \leftarrow Model(S, A)$

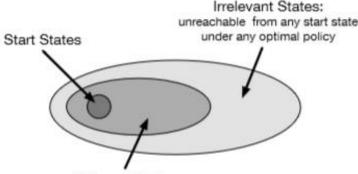
 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$

- Loop for all \overline{S} , \overline{A} predicted to lead to S:
 - $\bar{R} \leftarrow \text{predicted reward for } \bar{S}, \bar{A}, S$
 - $P \leftarrow |\bar{R} + \gamma \max_{a} Q(S, a) Q(\bar{S}, \bar{A})|.$
 - if $P > \theta$ then insert $\overline{S}, \overline{A}$ into PQueue with priority P



Trajectory Sampling

- UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DI ROM
- DP performs updates on each state
 - Problematic on large tasks: many states might be irrelevant
- Alternative:
 - Sample state or state-action space according to a distribution
 - Uniformly as Dyna-Q is bad (as for the full state space selection)
 - We can use on-policy distribution (observed following policy)
 - Easy to generate
 - Sample actions given by policy
 - Called trajectory sampling



Relevant States reachable from some start state under some optimal policy

	DP	RTDP
Average computation to convergence	28 sweeps	4000 episodes
Average number of updates to convergence	252,784	$127,\!600$
Average number of updates per episode		31.9
% of states updated ≤ 100 times		98.45
% of states updated ≤ 10 times		80.51
% of states updated 0 times		3.18

- Real-time DP: on-policy trajectory sampling version of value iteration (DP)
- Converges to optimal policies for discounted finite MDPs with exploring starts
- For certain types of problems it's guaranteed to find optimal policy on relevant states without visiting irrelevant states infinitely

Decision Time Planning WINIVERSITÀ UNIVERSITÀ UNIVERSITÀ UNIVERSITÀ UNIVERSITÀ DI RO

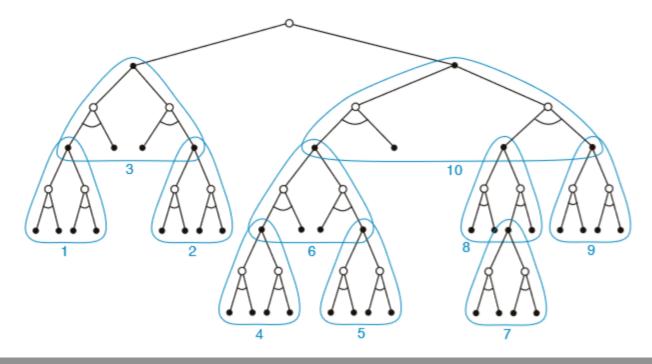
- Background planning (e.g., Dyna)
 - Not focused on current state
 - Gradually improve policy on the basis of simulated experience from model
 - Planning plays a part well before an action is selected
- Decision-time planning
 - Begin planning after encountering each new state
 - Evaluates action choices leading to different predicted states
 - Use simulated experience to select an action for the current state
 - Values and policy are updated specifically for current state
- Can be blended together

Heuristic Search

- Classical AI state-space planning
 - For each state met a large tree of possible continuations is evaluated
 - Approximate value function applied to leaf nodes and backed up
 - Best of values after back-up is chosen as current action
 - All backed-up values are (generally) discarded
- Value function generally hand-designed and never changed
 - This would be natural to do however
 - Greedy policies similar to one step heuristic search without saving back-up
- Focused on current state (memory and computational resources are focused)

Heuristic Search

- Limit case:
 - Use exactly methods of heuristic search to construct tree
 - Perform individual one-step updates from bottom up
 - In tabular case and with ordered updates: exactly like depth-first heuristic search
 - No multi-step update, but focused multiple one-step updates

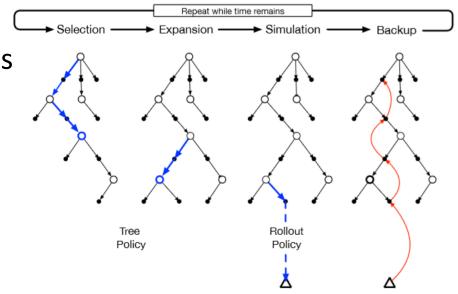


Roll-out Algorithms

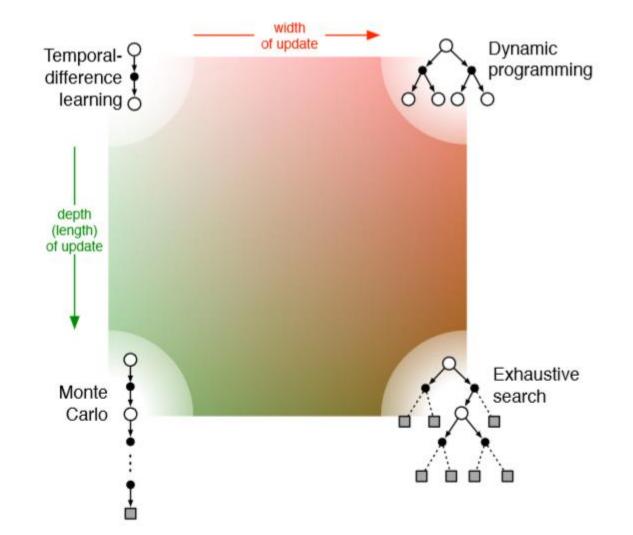
- Decision-time planning algorithms
- Uses MC control applied to simulated trajectories starting at current state
 - Average returns of many simulated trajectories with each possible action and then following *rollout* policy
 - When estimate accurate, highest value action is executed
- Unlike MC methods does not estimate complete optimal action-value function
 - Produces MC estimates of action values only for each current state and given policy
- Make immediate use of action-value estimates and then discard them
 - Generally no long-term memory of values and policies
- Maximizes estimate of Q for s and each action to improve upon rollout policy
 - Policy improvement theorem holds
 - Not looking for optimal policy

Monte-Carlo Tree Search

- Estimates direct simulations toward highly-rewarding trajectories
- Executed at each new state to select agent's action just for that state
- Multiple focused simulations from current state to terminal state
 - Can be truncated as we have seen for RL
- Doesn't have to retain approximate V functions or policies
 - Although in many implementations it does (it's useful)
- Tree policy: select actions that look promising based on simulated trajectories
 - Could be eps-greedy or UCB selection rule
- No values are stored for states beyond the tree



Summary



Reinforcement Learning

Model-Based RL