« Aa .

Model-Based .

Roberto Capobianco

Reinforcement Learning

SAPIENZA

WS/ UNIVERSITA DI ROMA

Model Based RL $5 OAPIENZA

* Model-based RL: emphasizes planning
* Model is not given, but learned

* Model-free RL: emphasizes learning
* Model: anything that an agent can use to predict how environment will respond to

actions
* Distribution models: describe all possibilities and their probabilities

 Sample models: produce just one possibility sampled according to probabilities

e Different but also very similar
 Both rely on value function
 Both use lookahead to future events
* Both use backed-up values

Reinforcement Learning Model-Based RL p)

SAPIENZA

UE/ UNIVERSITA DI ROMA

 Models can be used to mimic or simulate experience

 Sample models:
 produce a possible transition, given a starting state and action
 could produce an entire episode, given starting state and policy

* Distribution model
 generates all possible transitions weighted by probabilities
* could generate all possible episodes and their probabilities

* Inany case, model is used to simulate environment and produce simulated
experience

Reinforcement Learning Model-Based RL 3

Planning VS Learning § SAPIENZA

UNIVERSITA DI ROMA

* Planning uses simulated experience generated by a model VS real experience generated by the environment
 Performance is assessed differently and experience can be generated with different flexibility
 Learning methods can often be substituted for update steps of planning methods

value/policy

* Planning can be done online: while interacting with environment i

. dactin
* Interaction may change the model, interacting with planning — et ’
Computation resource divided between model learning and decision making AL
 Experience can improve the model (model-learning) model lEl=~'~Pﬂr"u=rrl't=*l‘r
* Experience can improve value function and policy using RL (direct RL)
* Policy and value function can be improved indirectly via model (indirect RL) Igﬁlﬁb

Reinforcement Learning Model-Based RL A

Q-Planning ¥ SARIENZA

* |Indirect methods often make full use of limited experience
* Achieve better policy with fewer environmental interactions

* Direct methods are often simpler and not affected by biases in model design

* Example: Q-Planning
* converges to optimal policy for the model under same conditions of one-step Q-learning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S
Q(S, 4) Q(S, A) + a[R + ymax, Q(S", a) ~ Q(S,)]

Reinforcement Learning Model-Based RL

SAPIENZA

WL/ UNIVERSITA DI ROMA

* Uses planning, acting, model-learning and direct RL N
* Planning: one-step tabular Q-planning Policy/value functions
* Direct RL: one-step tabular Q-learning planning update
* Model-learning: table based e expetience
* Record transitions and assume they deterministically happen search
* Returns last observed next state and reward as prediction for state-action pairs learning | control
* Queries can be done only against experienced state-action pairs Model
[Environment]
* Conceptually everything happens in parallel and simultaneously
* For implementation, we specify order
Model-Based RL 6

Reinforcement Learning

SAPIENZA

UNIVERSITA DI ROMA

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S « current (nonterminal) state
(b) A ¢ e-greedy (S, Q)
(¢) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) « Q(S, A) + a| R+ ymax, Q(S",a) — Q(S, A)]
(¢) Model(S, A) + R,S" (assuming deterministic environment)
(I Loop repeat n times:
S« random previously observed state
A« random action previously taken in S
R, S" + Model(S, A)
Q(S, A) « Q(S, A) + a| R+ ymax, Q(S',a) — Q(S, A)]

800-
600
Steps
per 4o0-
episode

2004

H actions

0 planning steps
(direct HL only)

144

5 planming steps

90 planning steps

Episodes

Model-Based RL

Reinforcement Learning

Dyna-Q Example § SapENzA

UNIVERSITA DI ROMA

* After first episode planning can doits job

WITHOUT PLANNING (72=0) WITH PLANNING (72=50)
I G ~=|=lt|r|={t] |G

} 11K K

g S | ¢ |=| !
-~ ==

[] | [

-~ b == }]=

Reinforcement Learning Model-Based RL

Model Inaccuracies ; W OAPIENZA

* In general models may be incorrect because environment is stochastic
* Only limited number of samples is observed
* Maybe we used also function approximation that generalized badly
* Maybe environment changed

* If modelisincorrect, planning generally computes suboptimal policy

 Suboptimal policy may lead to discovery and correction of error
 Happens if model is optimistic (predicts greater reward or better state)
* Planned policy attempts to exploit these opportunities
 Doingso it discovers that they do not exist
* If environment gets better, policy does not reveal improvement

Reinforcement Learning Model-Based RL 9

Model Exploration § SNz

UNIVERSITA DI ROMA

e A dlfferen’F version of e.xploratl-on Vs exploitation o P
* Exploration: trying actions that improve the model
 Exploitation: behaving optimally given current model 7
* We want to improve model without degrading performance

Cumulative
reward

 Dyna-Q+ uses one heuristic: Lo
 Keep track for each state-action pair of how many steps T :

elapsed since last real visit)
* Longer time > greater chance it might have changed

* Encourage behavior that tests untried actions

L [IsT T T 17T

Cumulative
reward

0 3000 6000
Time steps

Reinforcement Learning Model-Based RL

Focused Updates ® ANIENZA

* |n Dyna-Q state-action pairs are selected uniformly

* We can do better by focusing
* Avoid wasteful updates
e Useful updates grow as planning progresses

* Intuition: we want to do backward updates for states whose value change

* Value depends on lookahead in the future
* Actions leading into states that have better value need to be updated
* Their predecessors as well might have changed

e |dea: prioritize updates according to their urgency (prioritized sweeping)
* Queue of state-action pairs whose value would change a lot
* Prioritize by the size of change
* Efficiently propagate effect on each of predecessor pairs
» |f effectis larger than a threshold, pair is also inserted in queue with priority

Reinforcement Learning Model-Based RL 11

Prioritized Sweeping § Sapinza

UNIVERSITA DI ROMA

Initialize Q(s,a), Model(s,a), for all s,a, and PQueue to empty

Loop lorever: 107~
(a) S ¢« current (nonterminal) state
(b) A ¢ policy(S, Q) 10°4
(¢) Take action A; observe resultant reward, R, and state, S’
(d) Model(S, A) + R, S’ 10°
() P ¢ R+~ max, Q(S", a) — Q(S, A)|. Updates e
(f) if P > 6, then insert S, A into PQueue with priority P until 104 Prioritized
(g) Loop repeat n times, while PQueue is not empty: optimal e
S, A « first(PQueue) solution 34
R,S" «+ Model(S, A)
Q(S8,A) + Q(8,A) + ao| R+ ymax, Q(5,a) — Q(S, A)] 102+
Loop for all S, A predicted to lead to S:
R + predicted reward for S, A, S 10 S T s
P+ |R + vymax, Q(S,a) — Q(S, A)|. 0 47 94 186 376 752 1504 3008 6016
il P > # then insert S, A into PQueue with priority P Gridworld size (#states)

Reinforcement Learning Model-Based RL

Trajectory Sampling § SAPIENZA

UNIVERSITA DI ROMA

 DP performs updates on each state
* Problematic on large tasks: many states might be irrelevant vt Py st

Start States under any optimal policy

* Alternative:
 Sample state or state-action space according to a distribution
 Uniformly as Dyna-Q is bad (as for the full state space selection)

* We can use on-policy distribution (observed following policy) .. Jeentsee ..
° Easy tO generate under some optimal policy
 Sample actions given by policy

DpP RTDP

Average computation to convergence 28 sweeps 4000 episodes
H H Average number of updates to convergence 252,784 127,600

[]] 3
Ca I Ied traJeCto ry Sampllng Average number of updates per episode — 31.9

98.45
80.51
3.18

% of states updated < 100 times
% of states updated < 10 times
% of states updated 0 times

* Real-time DP: on-policy trajectory sampling version of value iteration (DP)

 Converges to optimal policies for discounted finite MDPs with exploring starts

* For certain types of problems it’s guaranteed to find optimal policy on
relevant states without visiting irrelevant states infinitely

Reinforcement Learning Model-Based RL

Decision Time Planning W S/APIENZA

 Background planning (e.g., Dyna)
* Not focused on current state
 Gradually improve policy on the basis of simulated experience from model
* Planning plays a part well before an action is selected

* Decision-time planning
* Begin planning after encountering each new state
* Evaluates action choices leading to different predicted states
 Use simulated experience to select an action for the current state
* Values and policy are updated specifically for current state

 Can be blended together

Reinforcement Learning Model-Based RL 14

Heuristic Search § SaiEnza

UNIVERSITA DI ROMA

e C(Classical Al state-space planning
* For each state met a large tree of possible continuations is evaluated
* Approximate value function applied to leaf nodes and backed up
* Best of values after back-up is chosen as current action
 All backed-up values are (generally) discarded

* Value function generally hand-designed and never changed
* This would be natural to do however
* Greedy policies similar to one step heuristic search without saving back-up

* Focused on current state (memory and computational resources are focused)

Reinforcement Learning Model-Based RL

Heuristic Search Mo DAPTENZA

* Limit case:
* Use exactly methods of heuristic search to construct tree
 Perform individual one-step updates from bottom up
* Intabular case and with ordered updates: exactly like depth-first heuristic search

* No multi-step update, but focused multiple one-step updates

Reinforcement Learning Model-Based RL

Roll-out Algorithms § sy

UNIVERSITA DI ROMA

* Decision-time planning algorithms
 Uses MC control applied to simulated trajectories starting at current state
* Average returns of many simulated trajectories with each possible action and then

following rollout policy
* When estimate accurate, highest value action is executed

 Unlike MC methods does not estimate complete optimal action-value function
* Produces MC estimates of action values only for each current state and given policy

 Make immediate use of action-value estimates and then discard them
* Generally no long-term memory of values and policies

 Maximizes estimate of Q for s and each action to improve upon rollout policy
* Policy improvement theorem holds
* Not looking for optimal policy

Reinforcement Learning Model-Based RL 17

UNIVERSITA DI ROMA

Monte-Carlo Tree Search H SAPIENZA

* Rollout algorithm BUT accumulating value estimates
 Estimates direct simulations toward highly-rewarding trajectories
 Executed at each new state to select agent’s action just for that state

 Multiple focused simulations from current state to terminal state
 Can be truncated as we have seen for RL

Repeat while time remains

[—b Selection =—» Expansion =—— Simulation —— Backup

 Doesn’t have to retain approximate V functions or policies
 Although in many implementations it does (it’s useful)

 Tree policy: select actions that look promising based on
simulated trajectories

Could be eps-greedy or UCB selection rule
* No values are stored for states beyond the tree potiy Féfi,'.'?:yt

Reinforcement Learning Model-Based RL

Summary § SApiENzA

UNIVERSITA DI ROMA

width

Temporal- Siyem Dynamic
difference programming
learning

depth
(length)
of update
Exhaustive
Monte , search
Carlo e

Reinforcement Learning Model-Based RL

