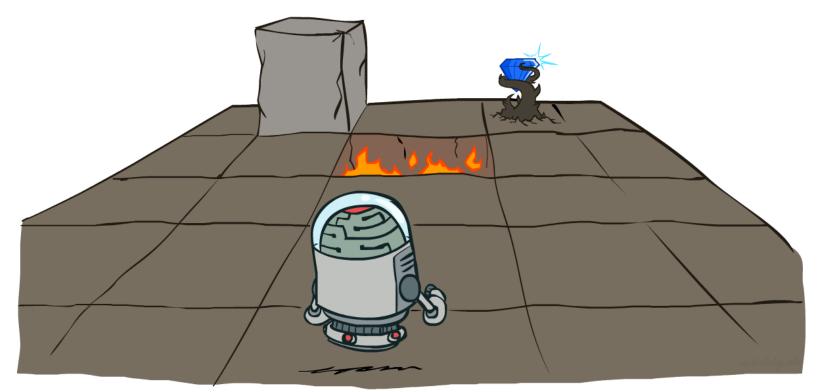
CS 188: Artificial Intelligence

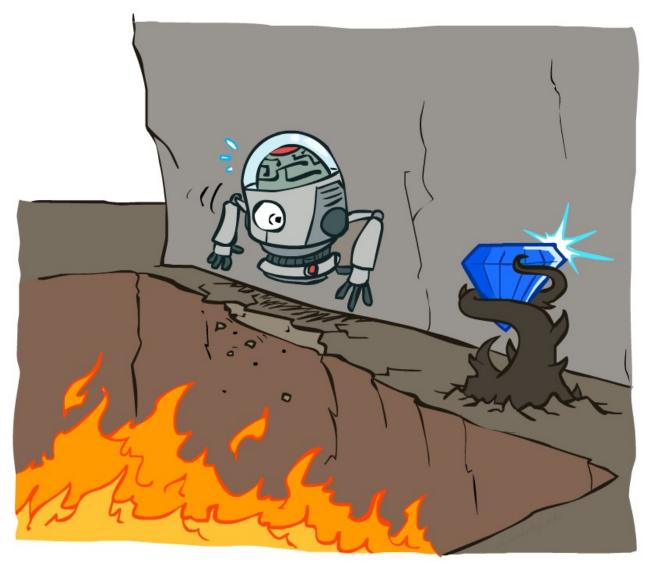
Markov Decision Processes (cap. 17)



Instructors: Dan Klein and Pieter Abbeel

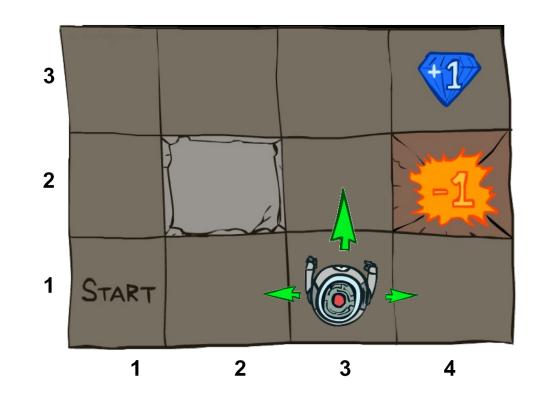
University of California, Berkeley

Non-Deterministic Search



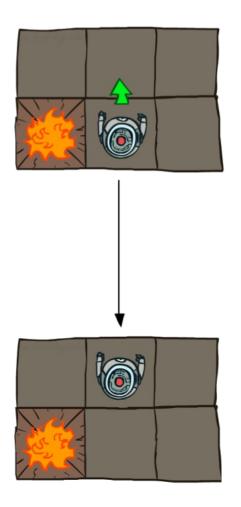
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

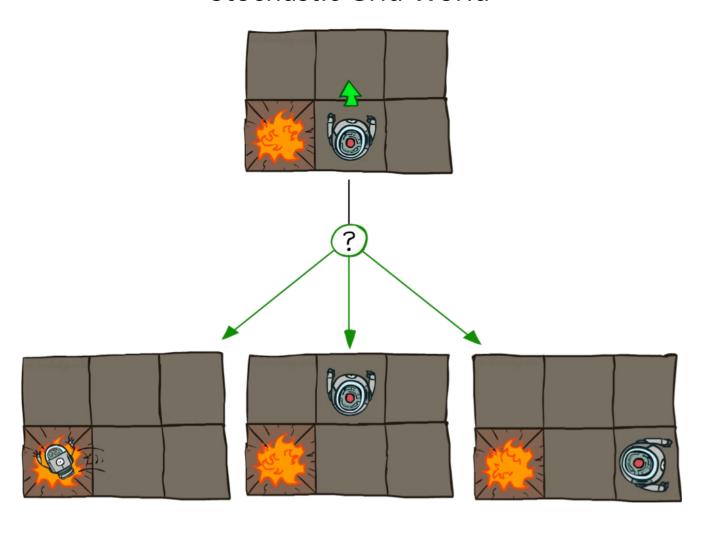


Grid World Actions

Deterministic Grid World

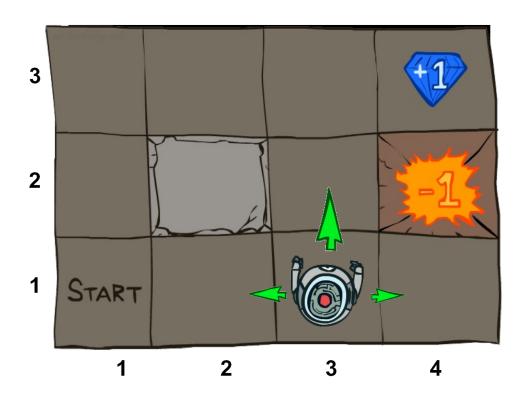


Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

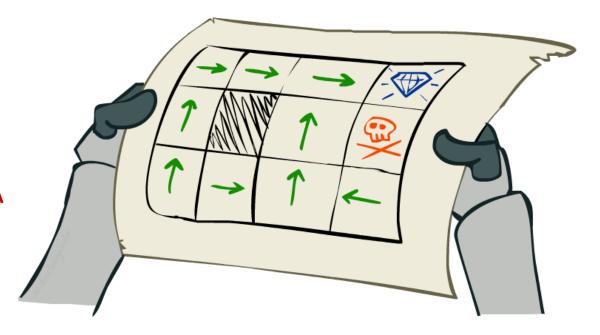
 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

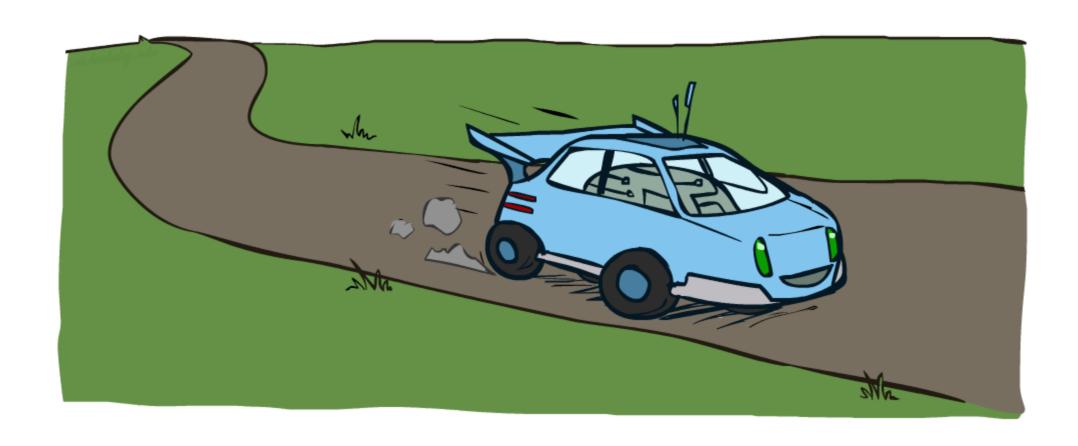
• In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only



Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example: Racing

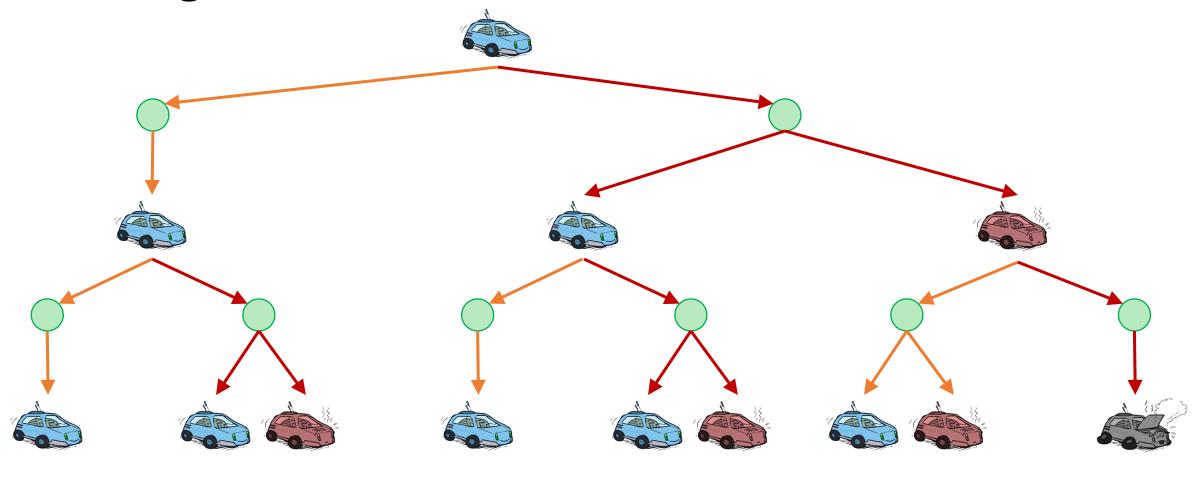


Example: Racing

• A robot car wants to travel far, quickly

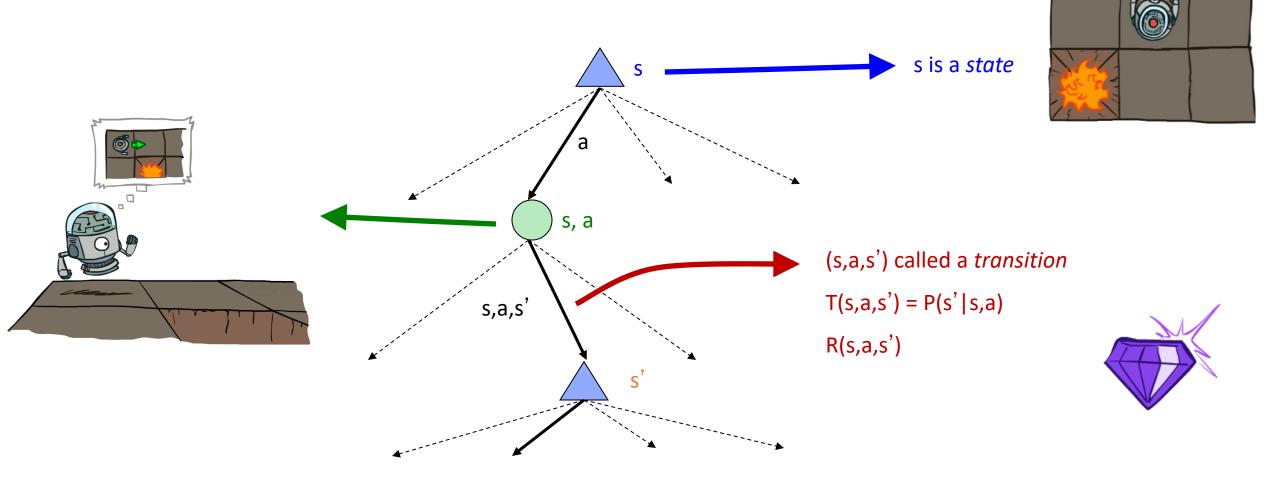
• Three states: Cool, Warm, Overheated

• Two actions: *Slow*, *Fast* 0.5 +1 Going faster gets double reward 1.0 Fast Slow -10 +1 0.5 Warm Slow 0.5 +2 Fast 0.5 Cool Overheated 1.0



MDP Search Trees

• Each MDP state projects an expectimax-like search tree



Infinite Utilities?!

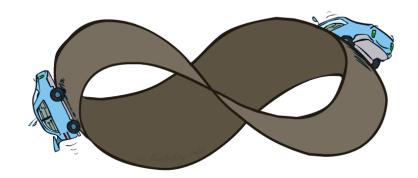
■ Problem: What if the game lasts forever? Do we get infinite rewards?

Solutions:

- Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
- Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



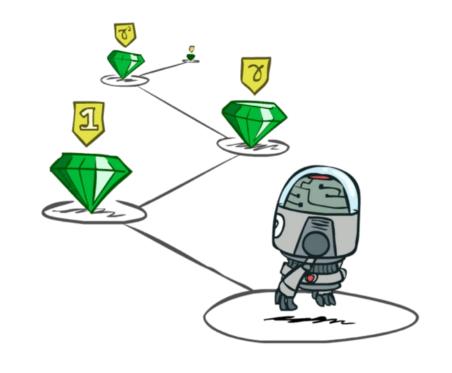
Stationary Preferences

• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

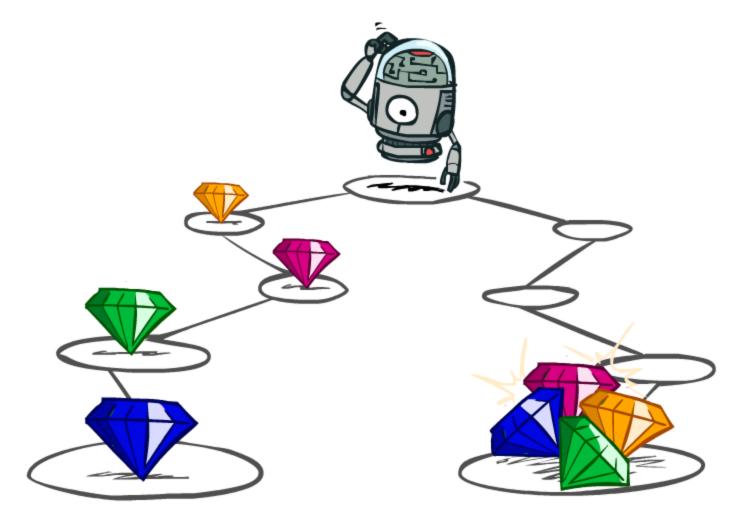
$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Utilities of Sequences

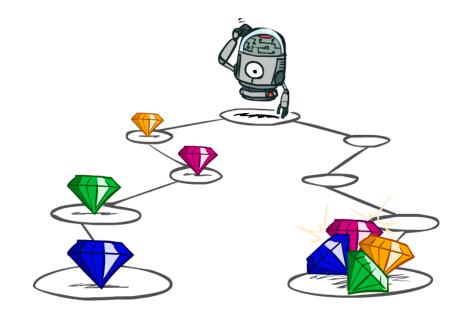


Utilities of Sequences

What preferences should an agent have over reward sequences?

• More or less? [2, 3, 4] or [1, 2, 2]

• Now or later? [1, 0, 0] or [0, 0, 1]

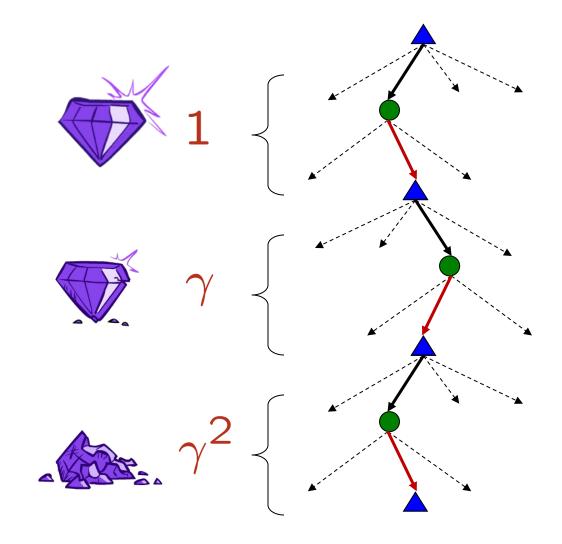


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

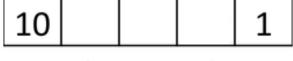
Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])



Quiz: Discounting

• Given:



a b c d e

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Living reward 0

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

10				1
----	--	--	--	---

• Quiz 2: For γ = 0.1, what is the optimal policy?

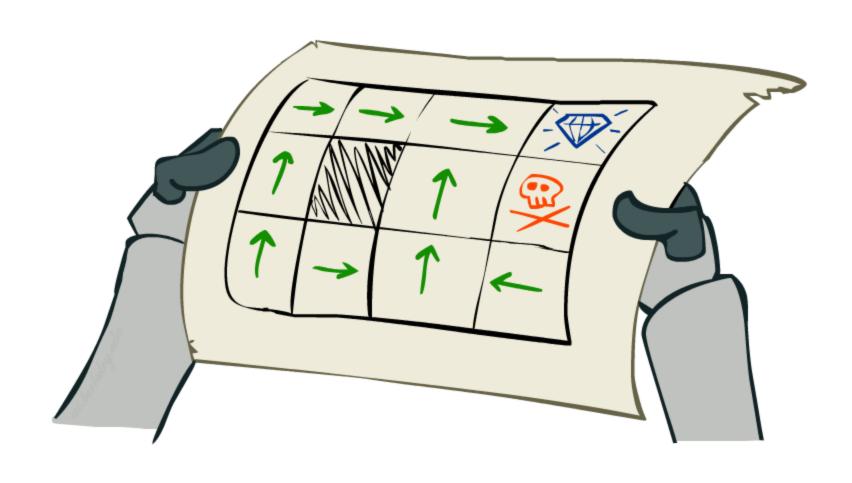
• Quiz 3: For which γ are West and East equally good when in state d?

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



Solving MDPs



Optimal Quantities

The value (utility) of a state s:

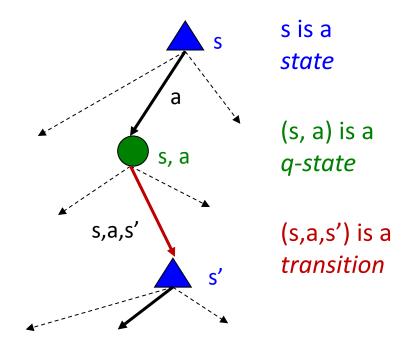
V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

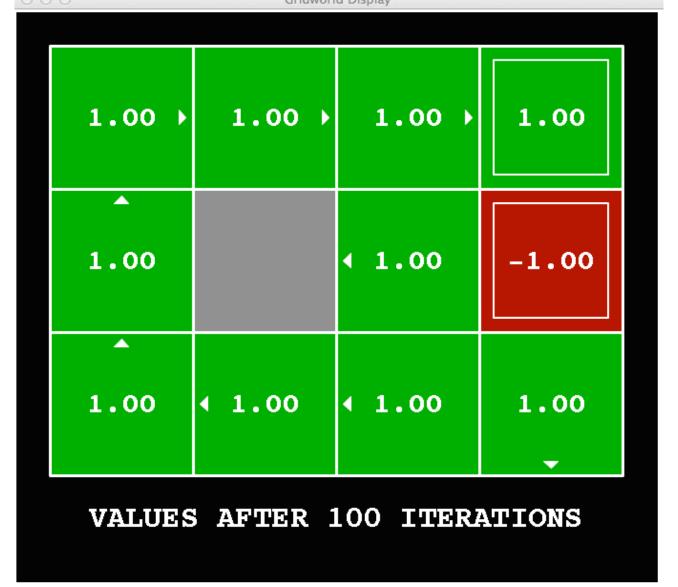
Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

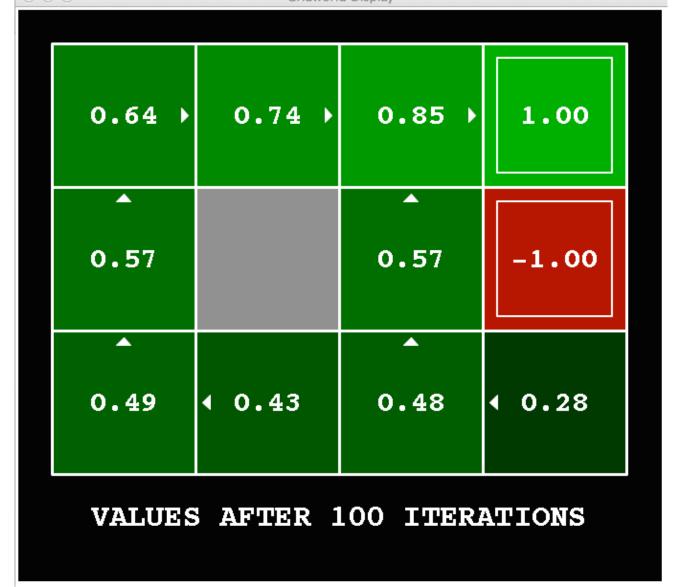


Snapshot of Demo – Gridworld V Values



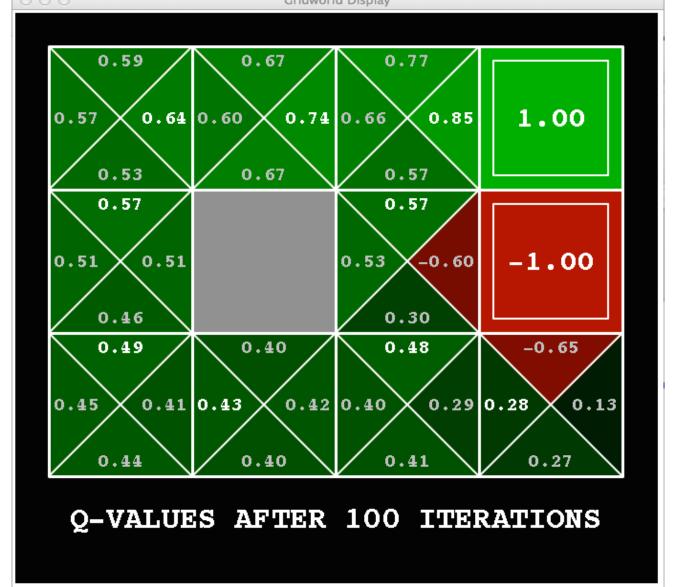
Noise = 0.2 Discount = 1 Living reward = 0

Snapshot of Demo - Gridworld V Values



Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Demo – Gridworld O Values

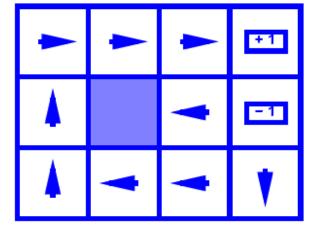


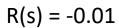
Noise = 0.2 Discount = 0.9 Living reward = 0

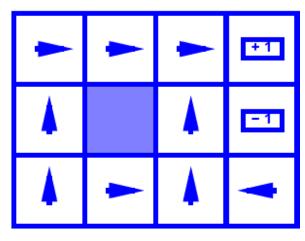
Snapshot of Demo – Gridworld V Values

Noise = 0.2 Discount = 0.9 Living reward = -0.1

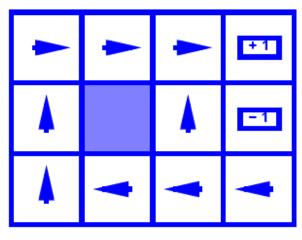
Optimal Policies



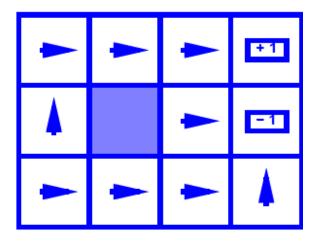




$$R(s) = -0.4$$



$$R(s) = -0.03$$



$$R(s) = -2.0$$

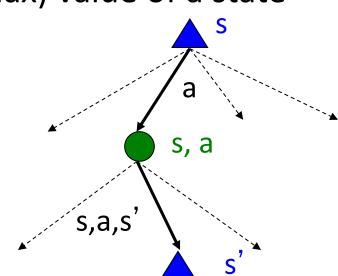
Values of States

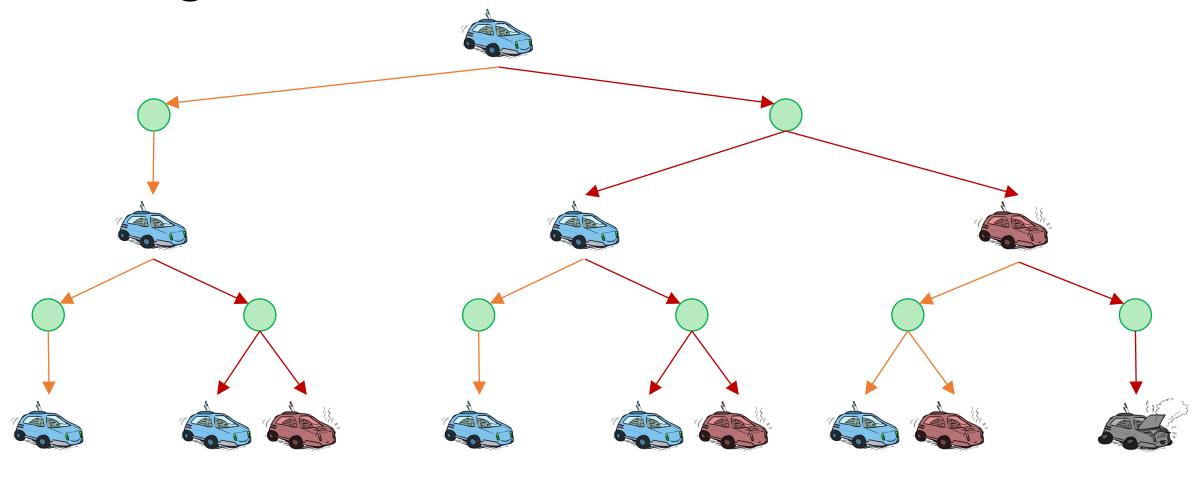
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

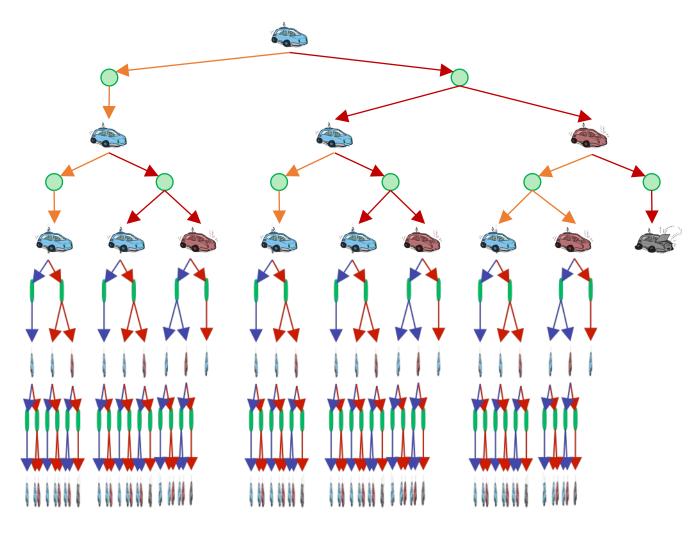
$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

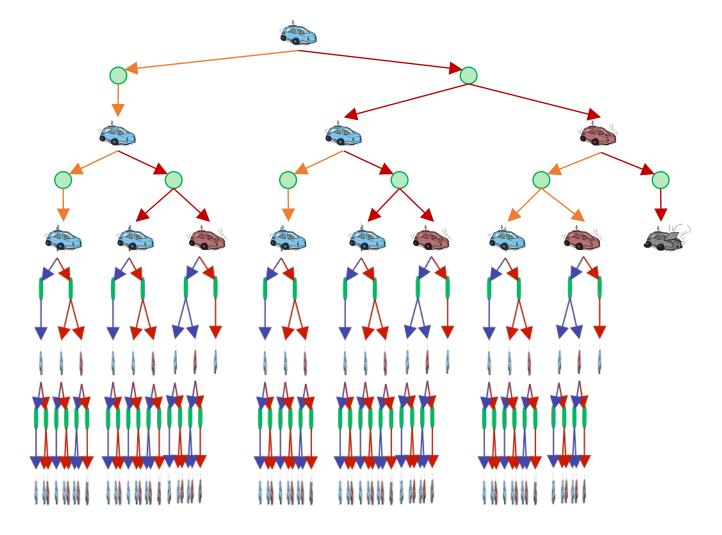
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$





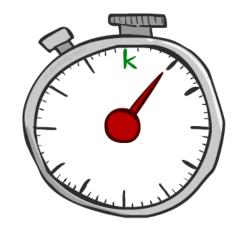


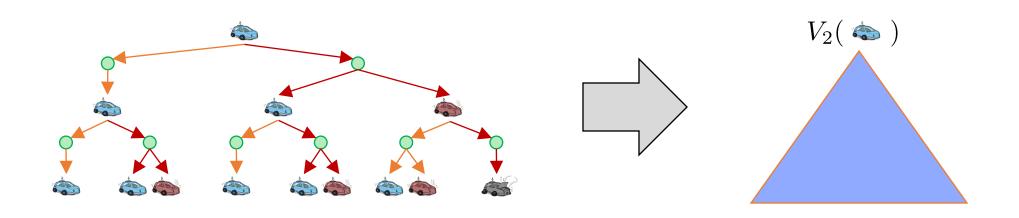
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



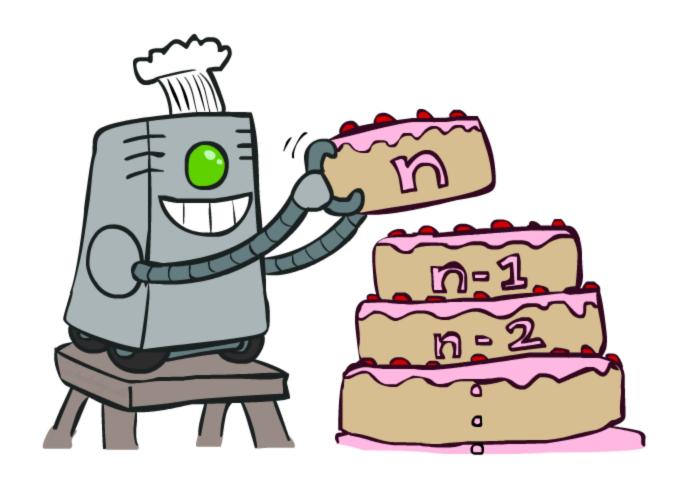
Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





Value Iteration

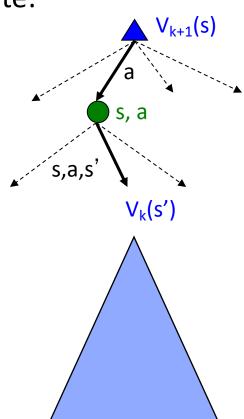


Value Iteration

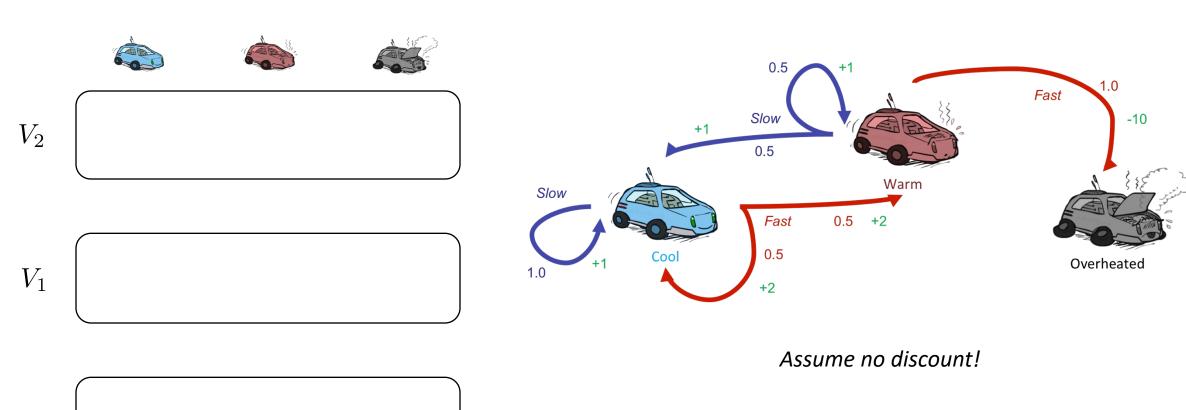
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do



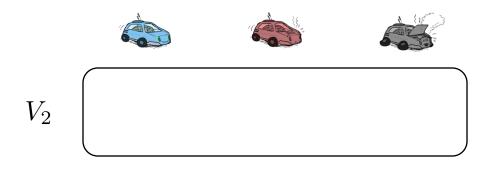
Example: Value Iteration

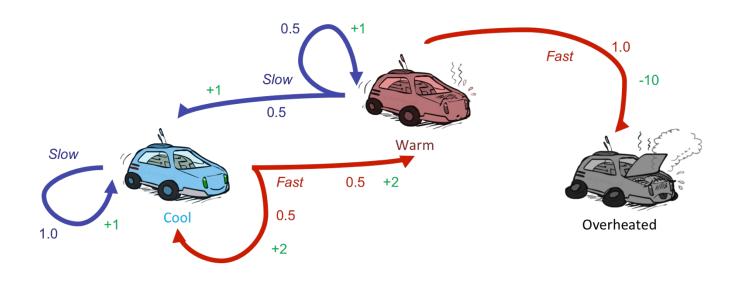


$$0 \qquad 0 \qquad V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Example: Value Iteration



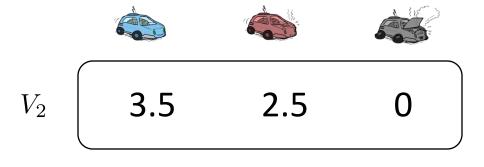


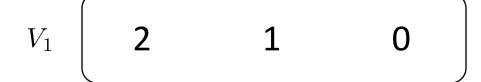
Assume no discount!

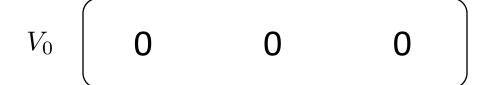
$$V_1() = \max((1*(1+0)), (0.5*(2+0) + 0.5*(2+0))) = 2$$
 $V_1() = \max((0.5*(1+0) + 0.5*(1+0)), (1*-10)) = 1$
 $V_1() = \max(0) = 0$

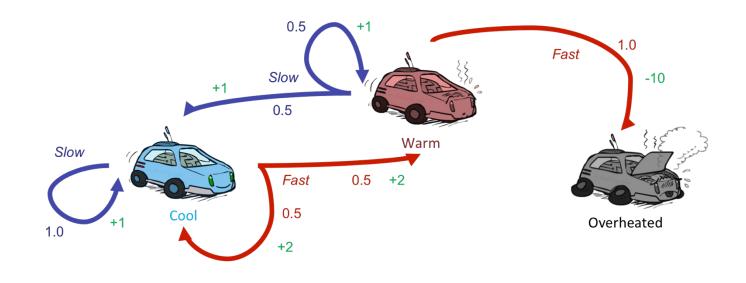
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Example: Value Iteration







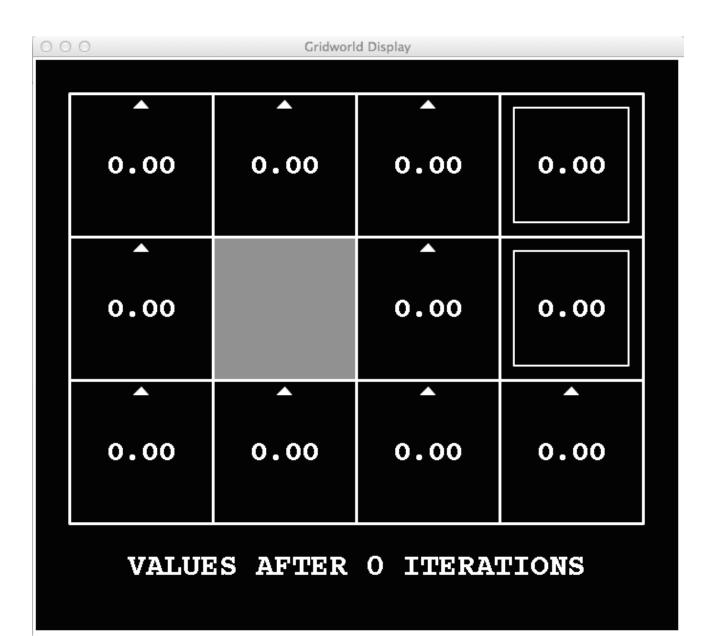


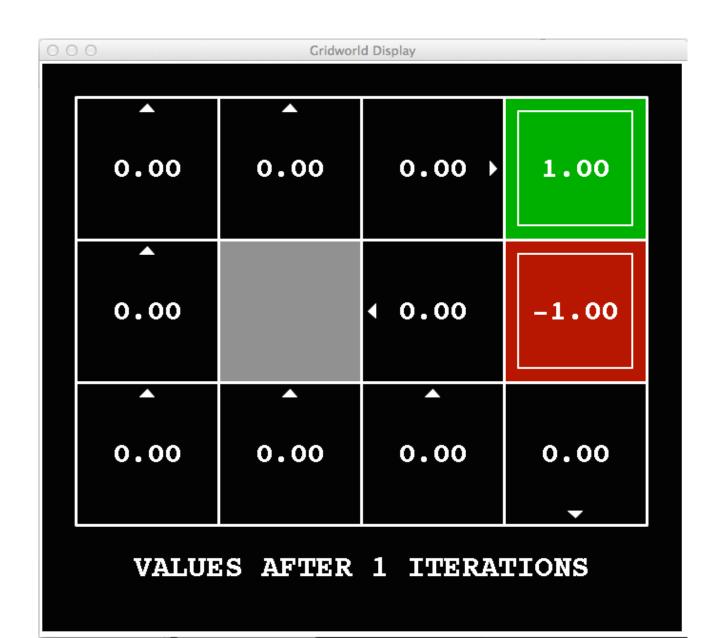
Assume no discount!

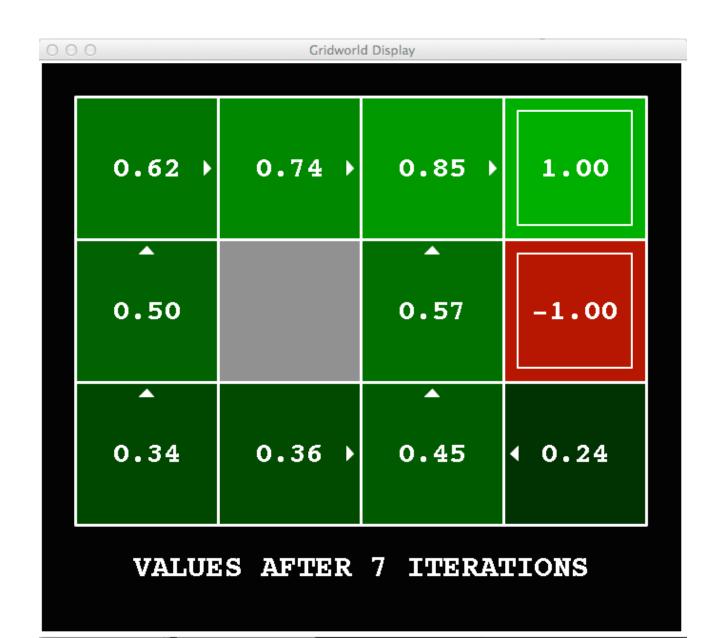
$$V_1(3) = max((1*(1+2)), (0.5*(2+2) + 0.5*(2+1))) = 3.5$$

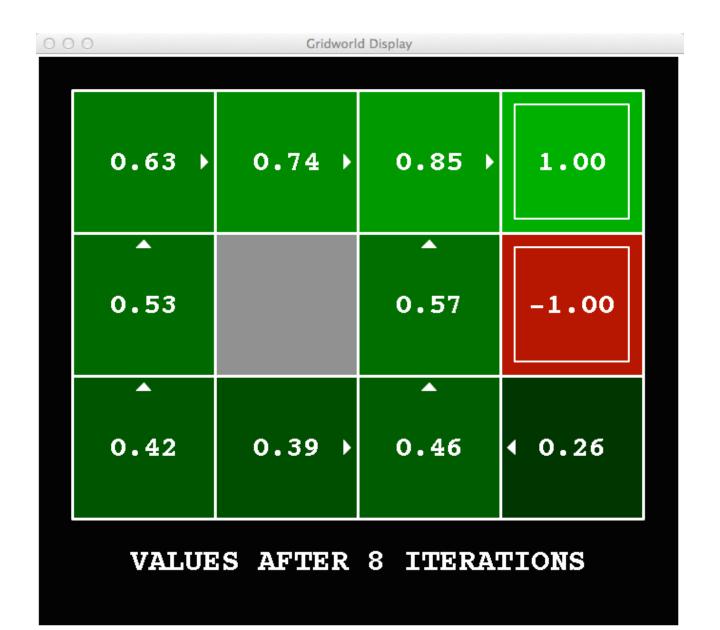
$$V_1(0.5 * (1 + 2) + 0.5 * (1 + 1)), (1* -10)) = 2.5$$

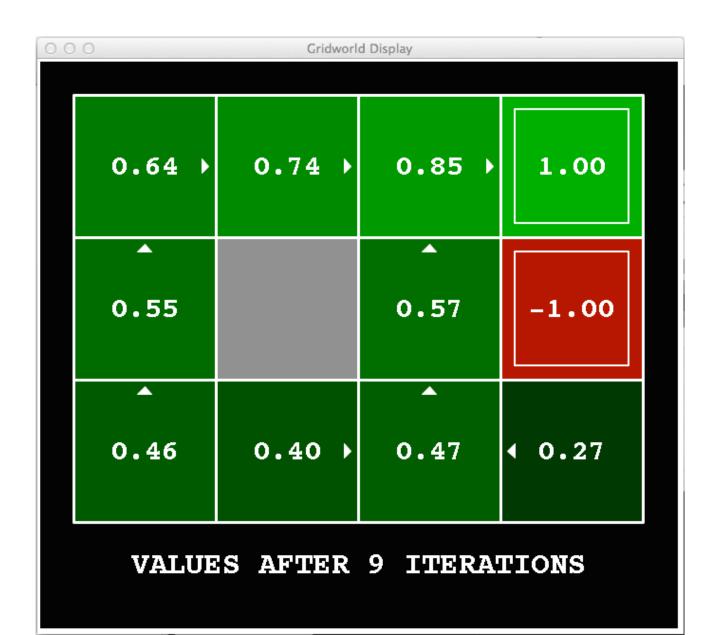
$$V_1(-1) = max(0) = 0$$



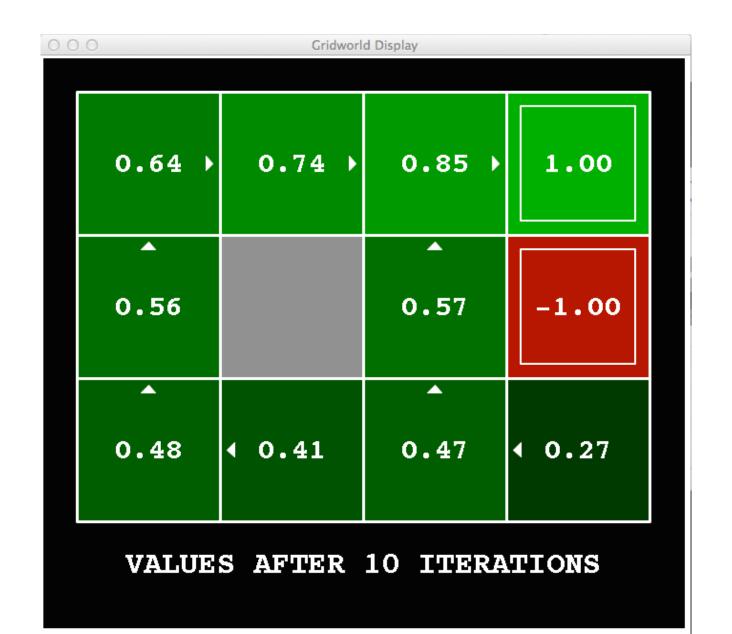




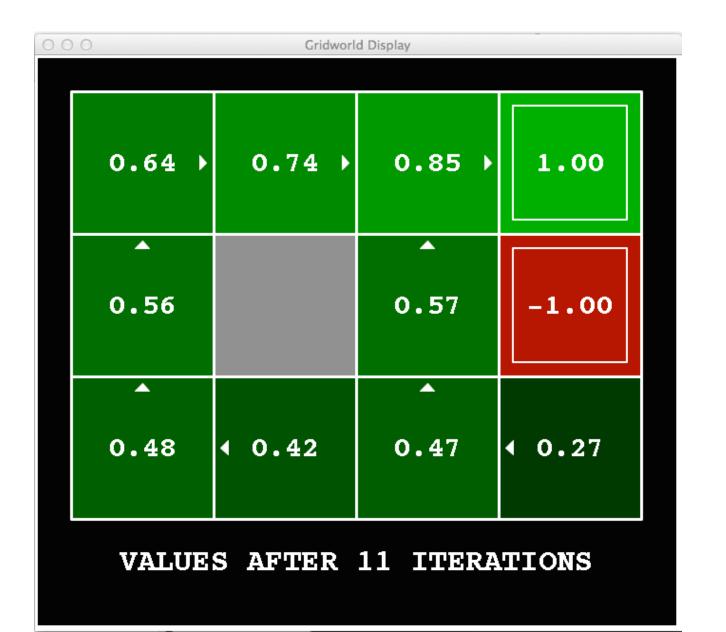




k = 10



k = 11



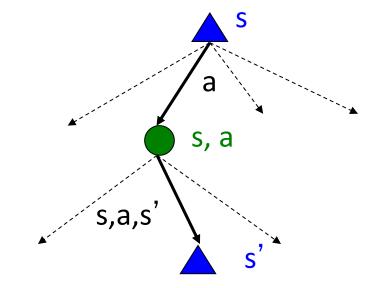


k = 100



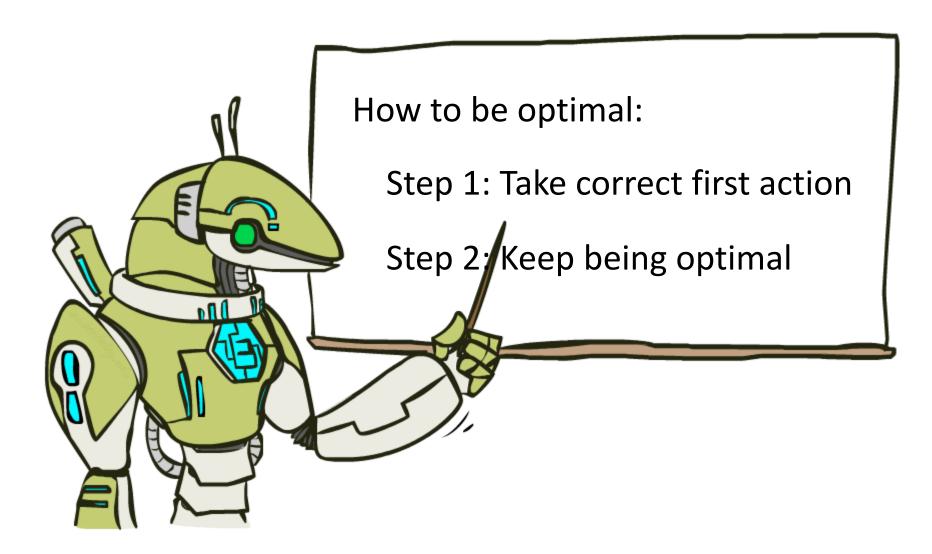
Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀



- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

The Bellman Equations



The Bellman Equations

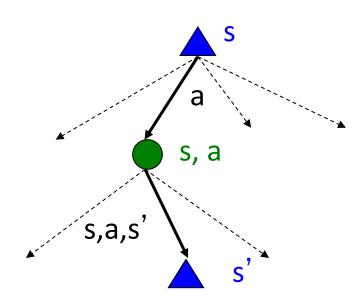
 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over



Value Iteration

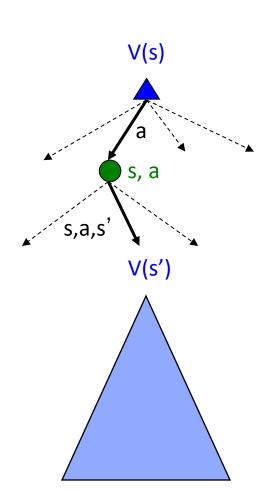
Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

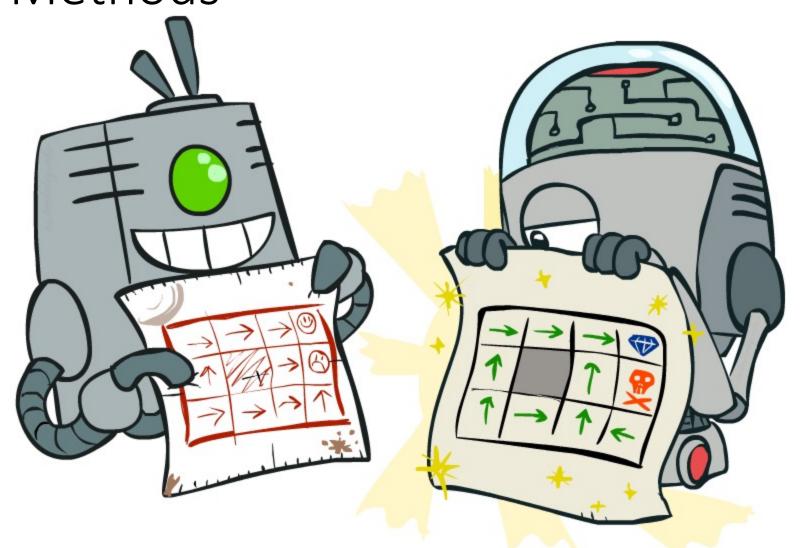
Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

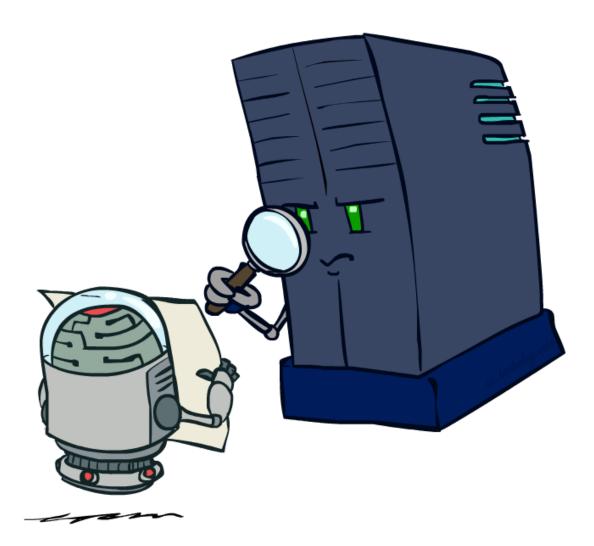
- Value iteration is just a fixed point solution method
 - $\bullet \, \dots \, though the \, V_k \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, interpretable \, as \, time-limited \, values \, vectors \, are \, also \, also \, vectors \, are \, also \,$



Policy Methods

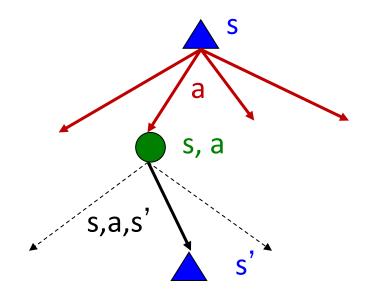


Policy Evaluation

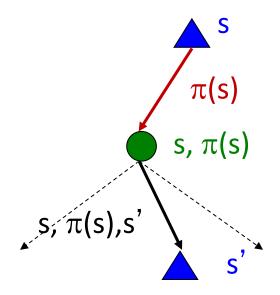


Fixed Policies

Do the optimal action



Do what π says to do

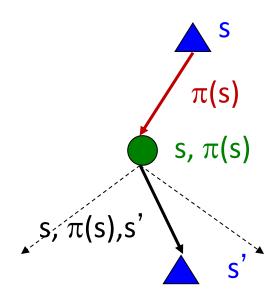


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

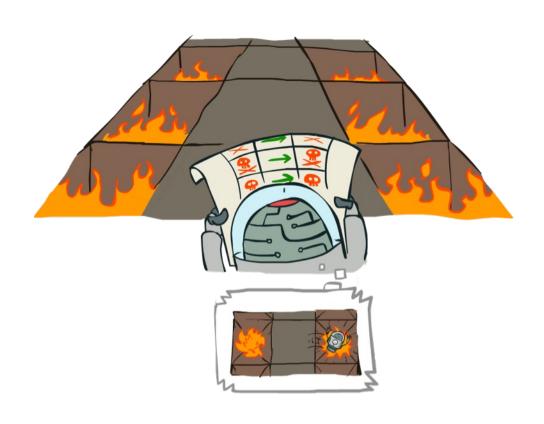
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

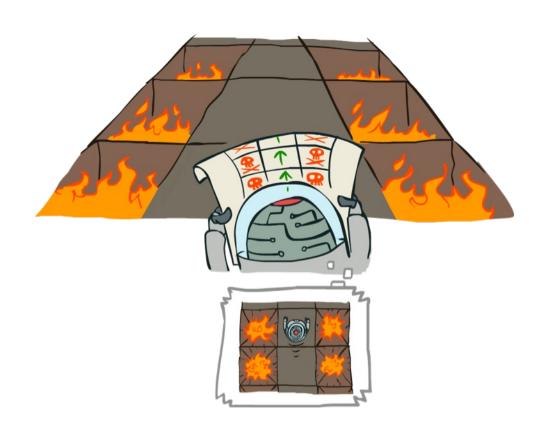


Example: Policy Evaluation

Always Go Right

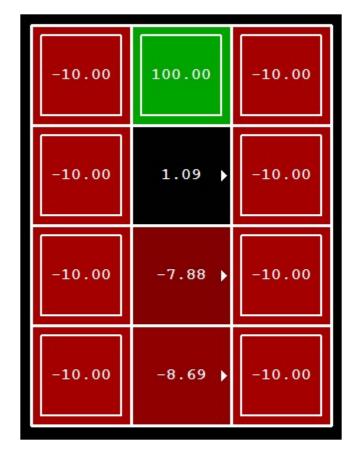
Always Go Forward



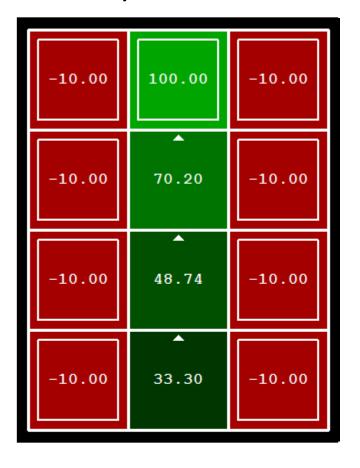


Example: Policy Evaluation

Always Go Right



Always Go Forward

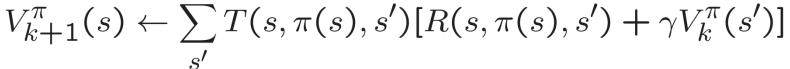


Policy Evaluation

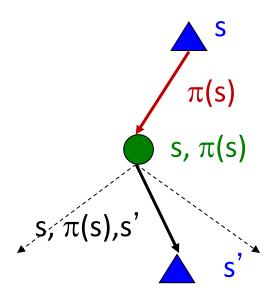
- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

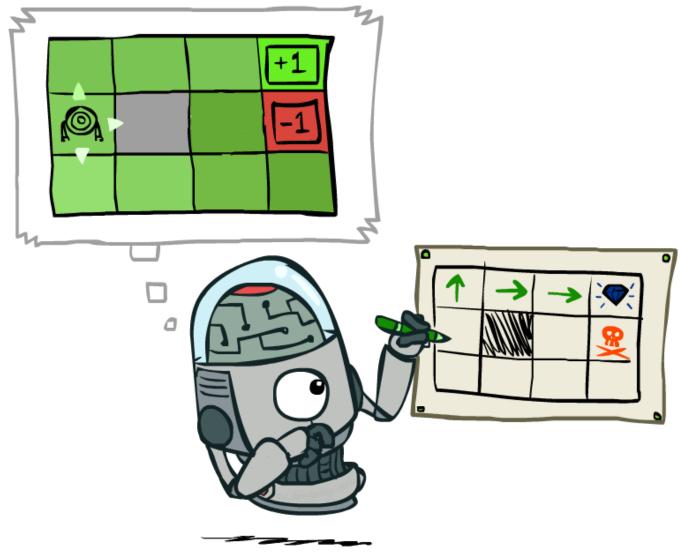
$$V_0^{\pi}(s) \leftarrow \sum T(s, \pi(s), s') [R(s, \pi(s), s')]$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

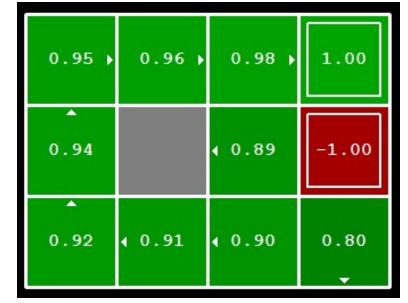


Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

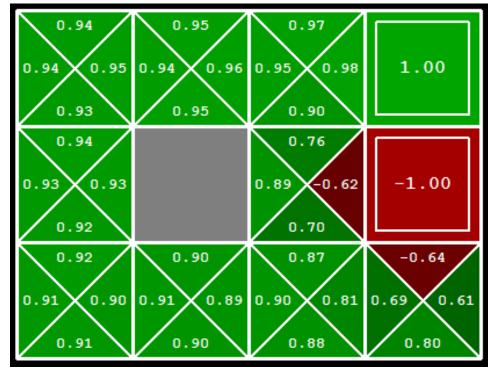
• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

• Let's imagine we have the optimal q-values:

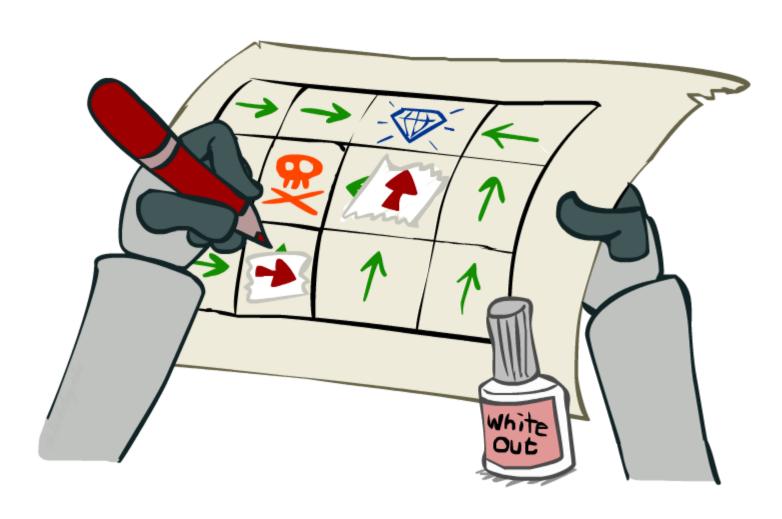
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$



• Important lesson: actions are easier to select from q-values than values!

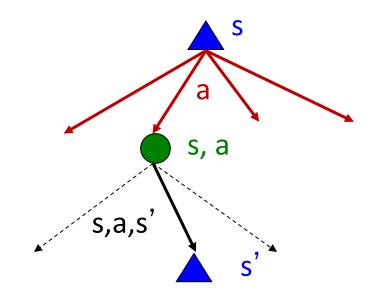
Policy Iteration



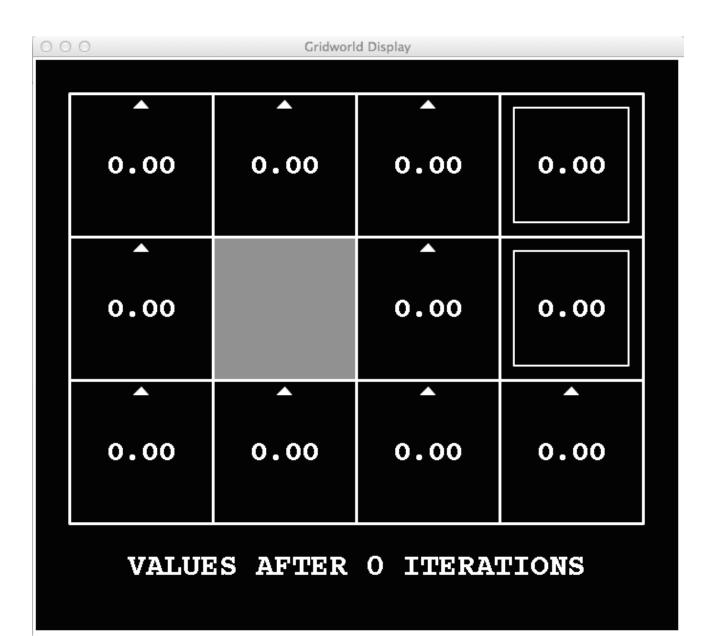
Problems with Value Iteration

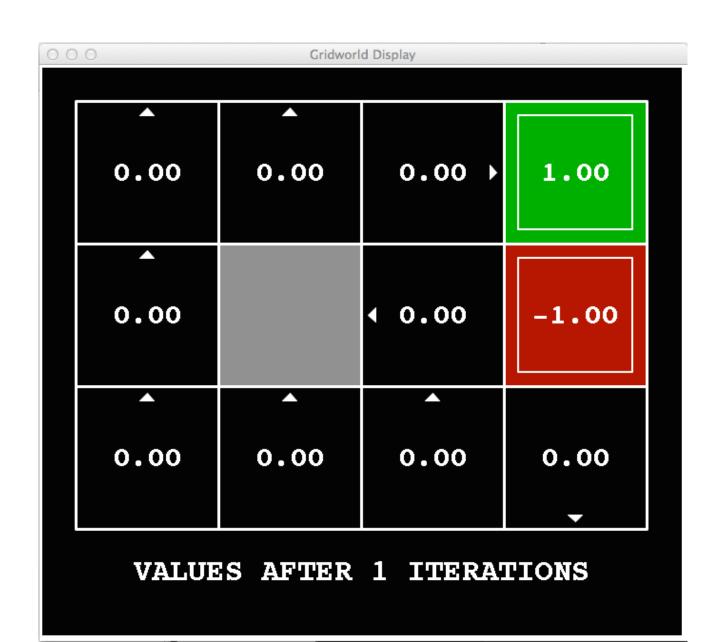
• Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

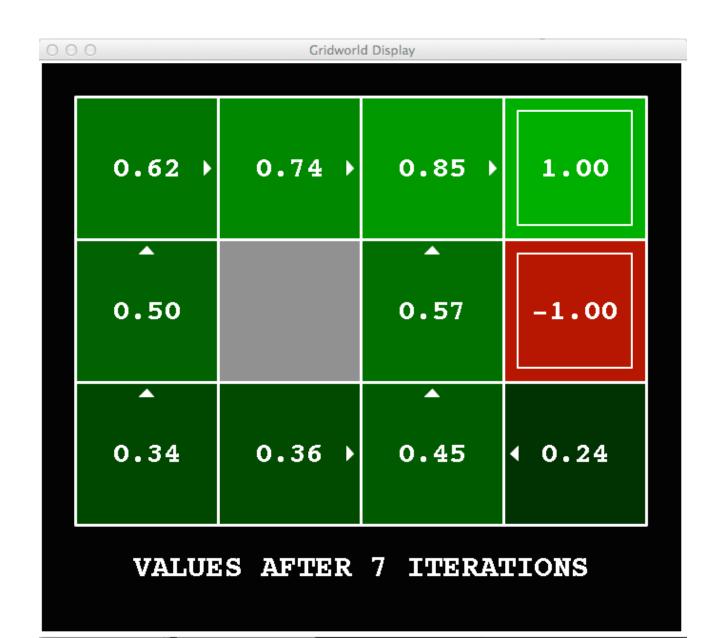


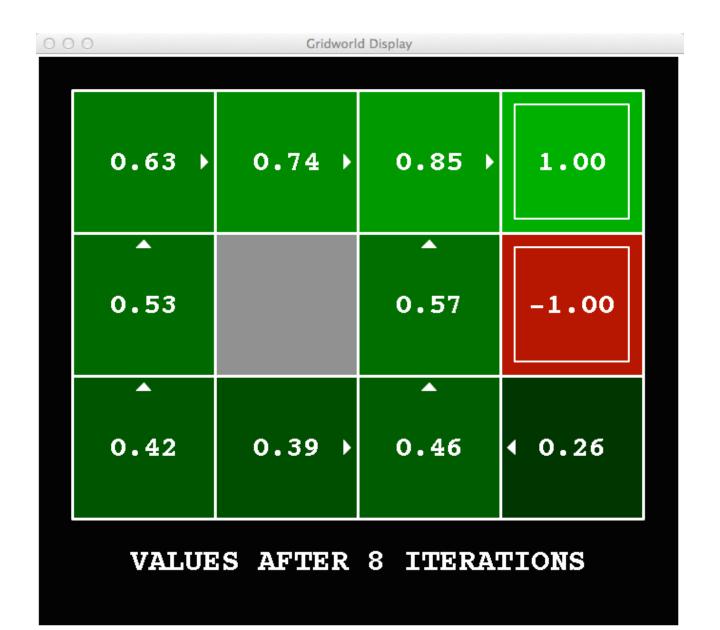
- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

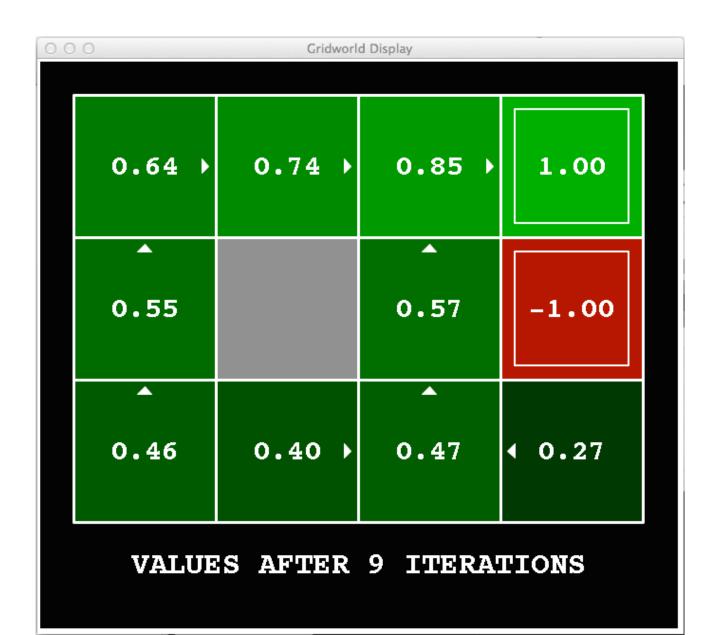




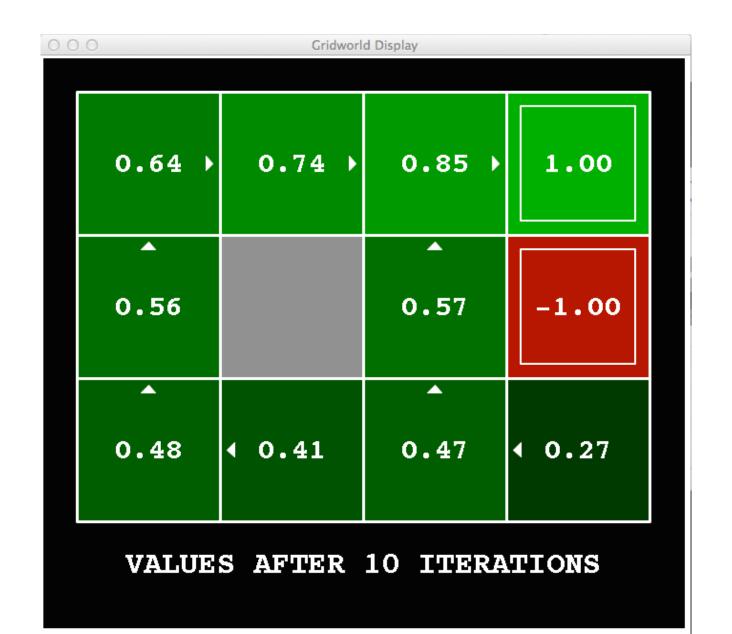




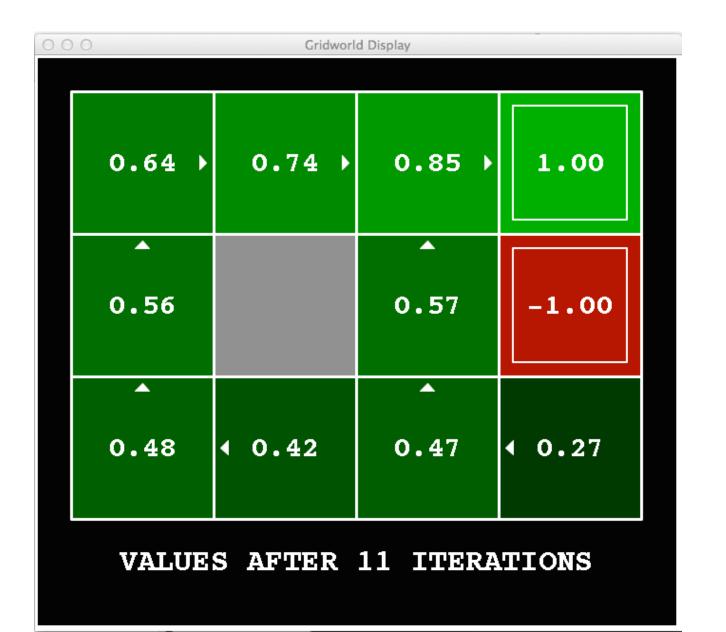




k = 10



k = 11





k = 100



Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Value Iteration

```
Algorithm 2: Value Iteration Algorithm
  Data: \theta: a small number
  Result: \pi: a deterministic policy s.t. \pi \approx \pi_*
  Function Value Iteration is
      /* Initialization
                                                                                 */
      Initialize V(s) arbitrarily, except V(terminal);
      V(terminal) \leftarrow 0;
      /* Loop until convergence
                                                                                 */
      \Delta \leftarrow 0;
      while \Delta < \theta do
          for each s \in S do
              v \leftarrow V(s);
              V(s) \leftarrow \max_a \sum_{s',r'} p(s',r|s,a)[r + \gamma V(s')];
              \Delta \leftarrow \max(\Delta, |v - V(s)|);
          end
      end
      /* Return optimal policy
                                                                                 */
     return \pi s.t. \pi(s) = arg \max_a \sum_{s',r'} p(s',r|s,a)[r + \gamma V(s')];
  end
```

Value Iteration

```
function Value-Iteration(mdp, \epsilon) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a), rewards R(s,a,s'), discount \gamma
\epsilon, the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero \delta, the maximum relative change in the utility of any state repeat
U \leftarrow U'; \delta \leftarrow 0
for each state s in S do
U'[s] \leftarrow \max_{a \in A(s)} Q\text{-Value}(mdp, s, a, U)
\text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]|
\text{until } \delta \leq \epsilon(1-\gamma)/\gamma
\text{return } U
```

Figure 17.6 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (??).

Policy Iteration

Algorithm 1: Policy Iteration Algorithm **Data:** θ : a small number **Result:** V: a value function s.t. $V \approx v_*$, π : a deterministic policy s.t. $\pi \approx \pi_*$ Function PolicyIteration is /* Initialization */ Initialize V(s) arbitrarily; Randomly initialize policy $\pi(s)$; /* Policy Evaluation */ $\Delta \leftarrow 0$; while $\Delta < \theta$ do for each $s \in S$ do $v \leftarrow V(s)$; $V(s) \leftarrow \sum_{s',r'} p(s',r|s,\pi(s))[r + \gamma V(s')];$ $\Delta \leftarrow \max(\Delta, |v - V(s)|);$ endend /* Policy Improvement */ policy-stable $\leftarrow true$; for each $s \in S$ do old-action $\leftarrow \pi(s)$; $\pi(s) \leftarrow arg \max_a \sum_{s',r'} p(s',r|s,a)[r + \gamma V(s')];$ if old-action $!=\pi(s)$ then policy-stable $\leftarrow false$; endend if policy - stable then return $V \approx v_*$ and $\pi \approx \pi_*$; $_{\rm else}$ go to Policy Evaluation;

end

end

Policy Iteration

```
function Policy-Iteration(mdp) returns a policy inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a) local variables: U, a vector of utilities for states in S, initially zero \pi, a policy vector indexed by state, initially random repeat U \leftarrow \text{Policy-Evaluation}(\pi, U, mdp) unchanged? \leftarrow \text{true} for each state s in S do a^* \leftarrow \underset{a \in A(s)}{\operatorname{argmax}} \text{ Q-Value}(mdp, s, a, U) \underset{a \in A(s)}{a \in A(s)} \text{ if } \text{ Q-Value}(mdp, s, a^*, U) > \text{ Q-Value}(mdp, s, \pi[s], U) \text{ then } \pi[s] \leftarrow a^*; unchanged? \leftarrow \text{ false} until unchanged? return \pi
```

Figure 17.9 The policy iteration algorithm for ca https://photos.google.com/photobooks

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

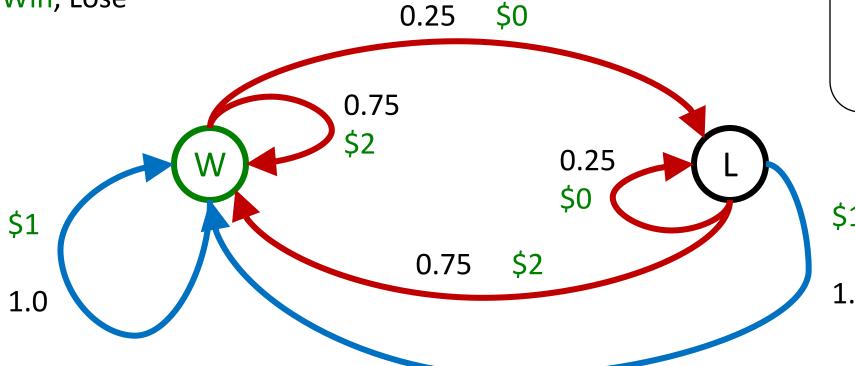
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

• Actions: Blue, Red



No discount 100 time steps Both states have the same value

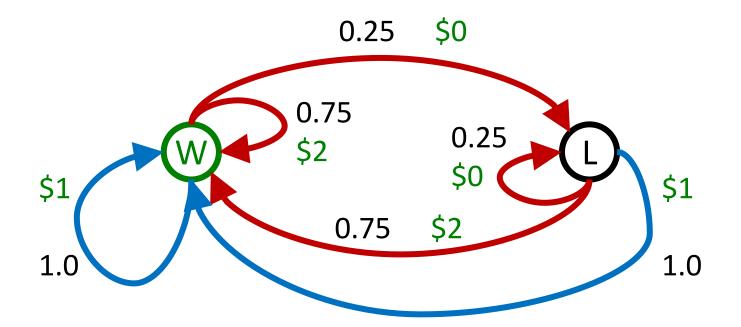
\$1

1.0

Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount
100 time steps
Both states have
the same value



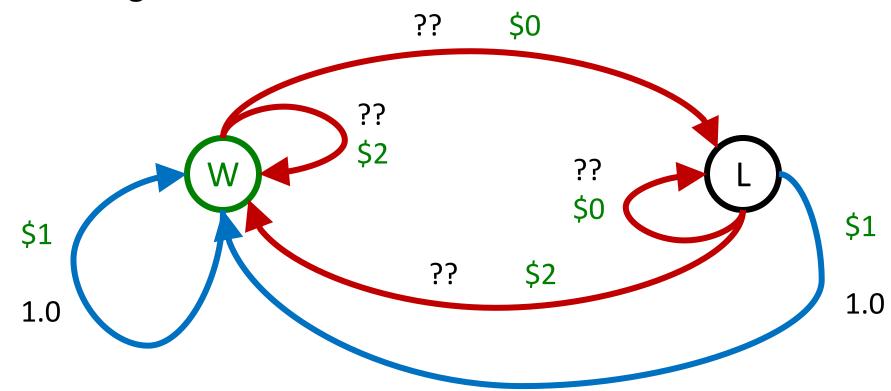
Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

• Rules changed! Red's win chance is different.



Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out

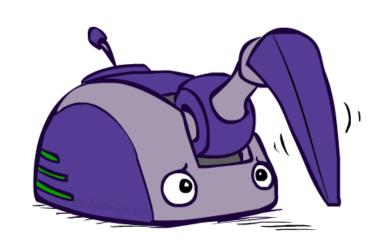
- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

CS 188: Artificial Intelligence Reinforcement Learning (cap. 22)

Instructors: Dan Klein and Pieter Abbeel

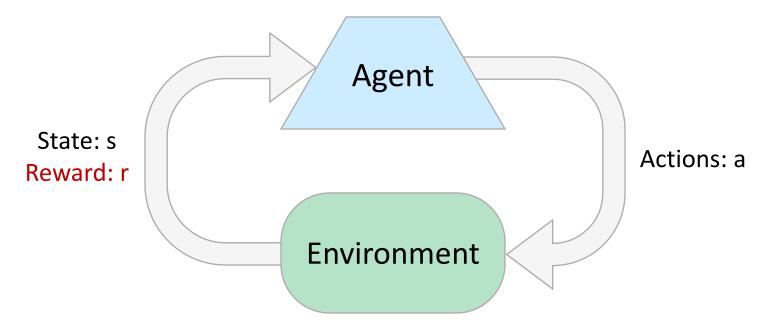
University of California, Berkeley

Reinforcement Learning





Reinforcement Learning



• Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

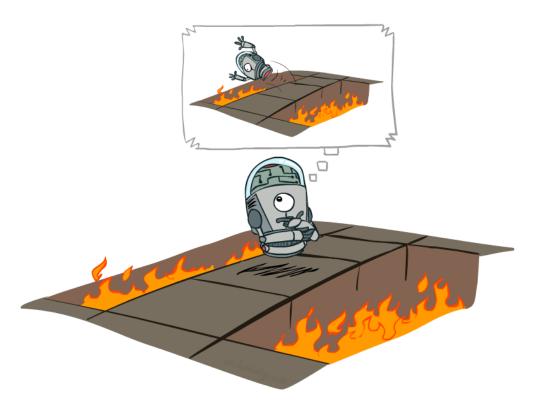
Finished

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

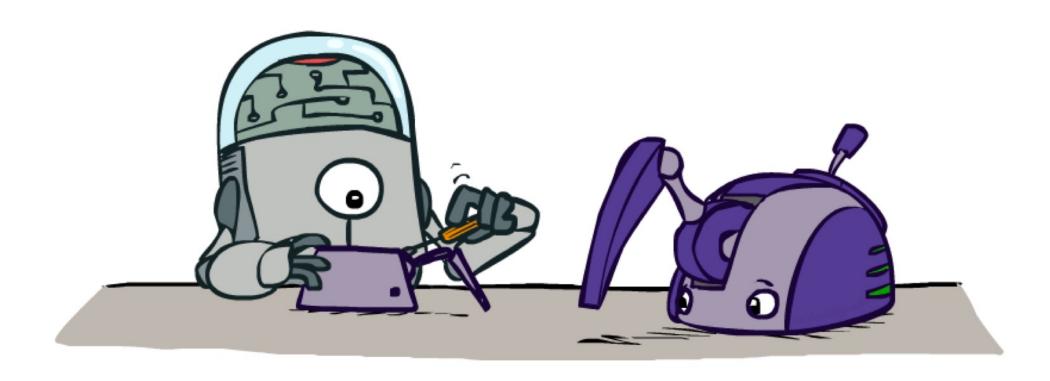
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



Model-Based Learning

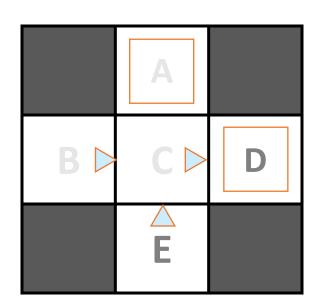
- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a $\widehat{T}(s, a, s')$
 - Normalize to give an estimate of
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s, a, s')$$

T(B, east, C) = 1.00T(C, east, D) = 0.75T(C, east, A) = 0.25

 $\widehat{R}(s,a,s')$

R(B, east, C) = -1R(C, east, D) = -1R(D, exit, x) = +10

Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

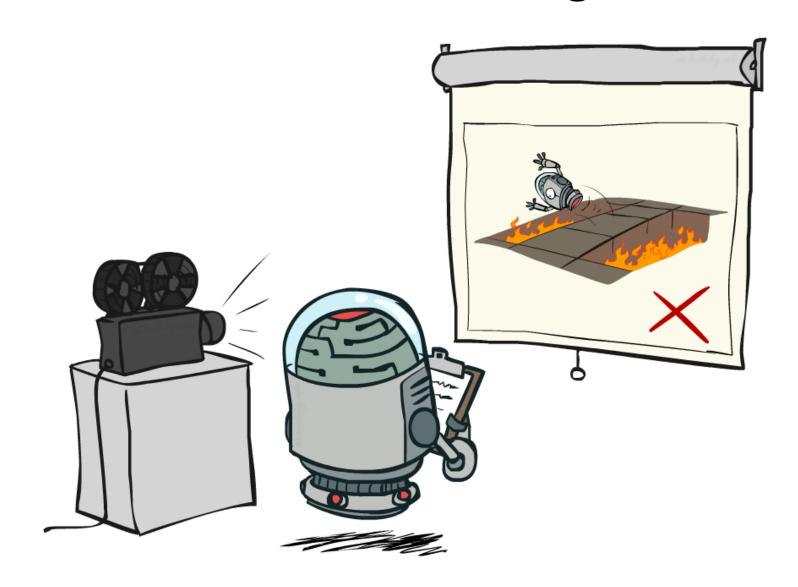
$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

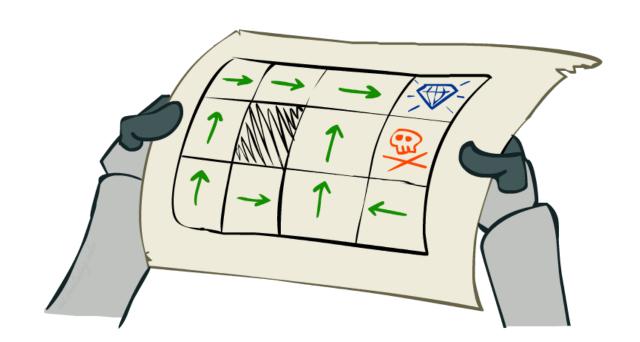


Passive Reinforcement Learning



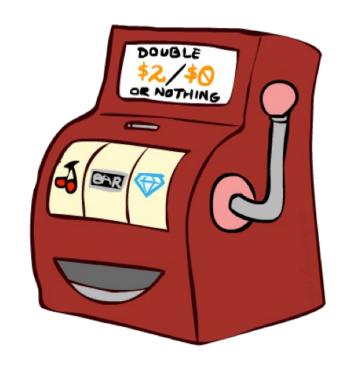
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values
- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.



Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

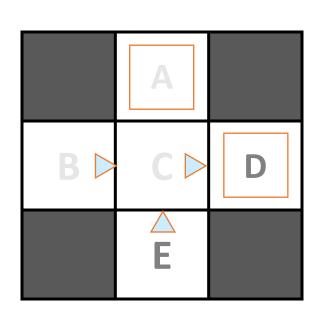


Example: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Output Values



Assume: $\gamma = 1$

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

E, north, C, -1 C, east, A, -1 A, exit, x, -10

	-10 A	
+8 B	+4	+10 D
	-2 E	

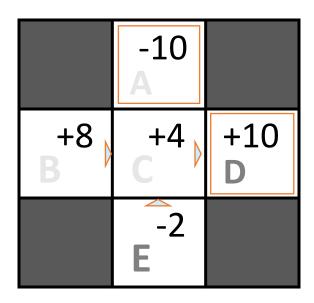
Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values



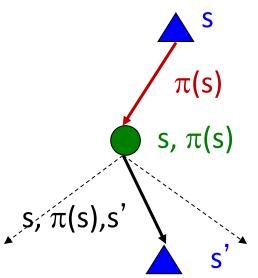
If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'



- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

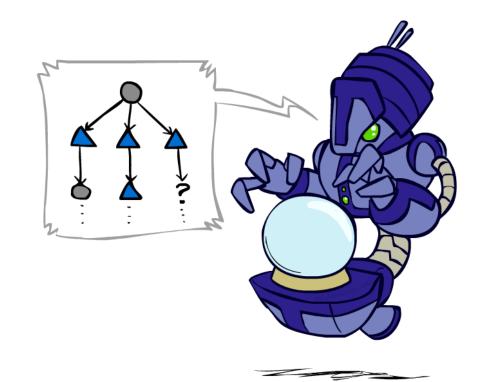
$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

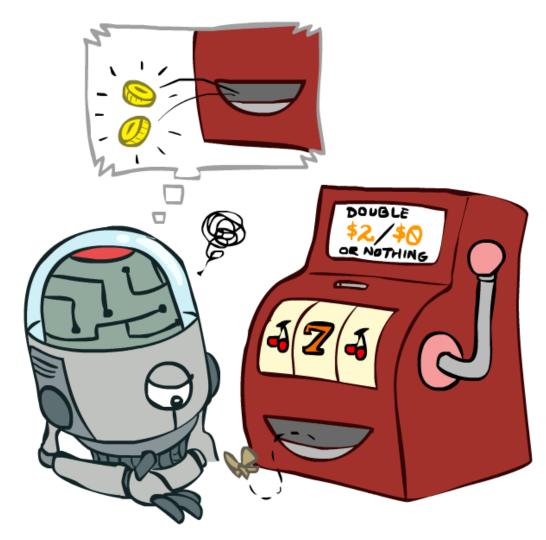
$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$



Temporal Difference Learning



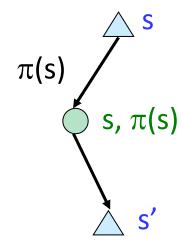
Temporal Difference Learning

Let suppose:

• V(1,3) = 0.84 and V(2,3) = 0.92

Any time the transition $((1,3), \pi((1,3)), (2,3))$ occurs, we have

•
$$V(1,3) = -0.04 + V(2,3) = 0.88$$



This entails that the current esteem is too small and it is better to increase it.

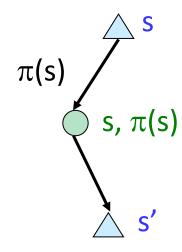
Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average



Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

TD Learning

```
Algorithm 1 Tabular TD(0) for estimating v_{\pi}
Input: Policy \pi to be evaluated Parameters: Learning rate \alpha \in (0,1]
 1: for each episode: do
       Initialize S
 2:
       while S is not terminal: do
           Take action A given by \pi(a|S)
           Observe R, S'
 5:
          Update V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
           S \leftarrow S'
       end while
 9: end for
```

Pseudo-code for the TD(0) algorithm, reproduced from Reinforcement Learning, an introduction [4]

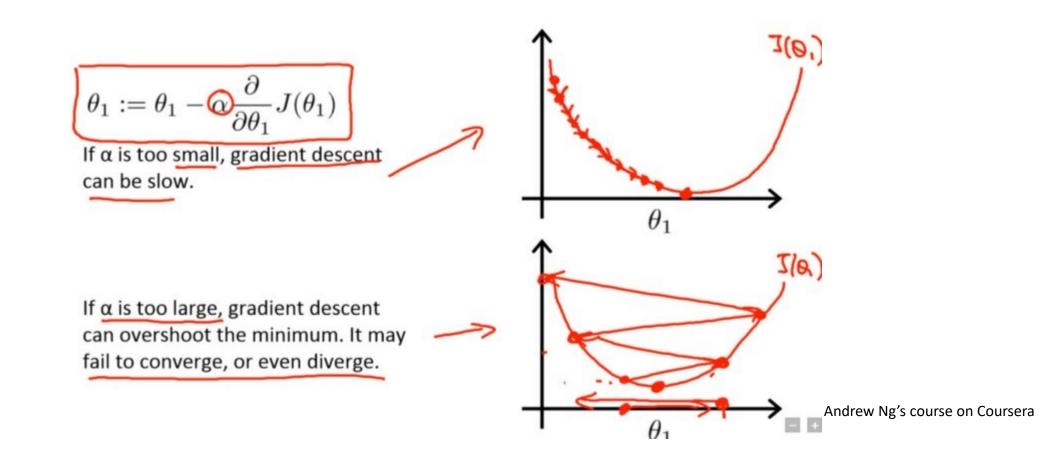
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1-\alpha)\cdot \bar{x}_{n-1} + \alpha\cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

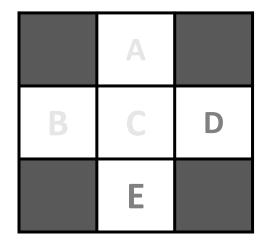
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Similarly to the Gradient descent



Example: Temporal Difference Learning

States

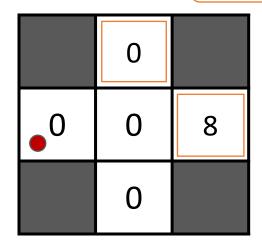


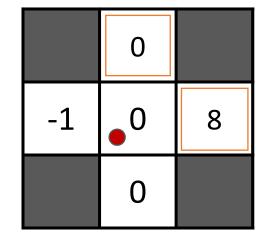
Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

C, east, D, -2





$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

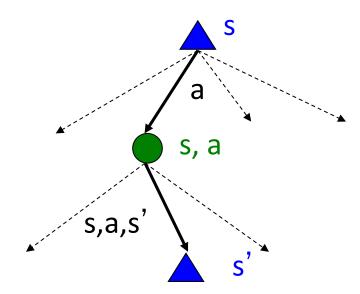
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

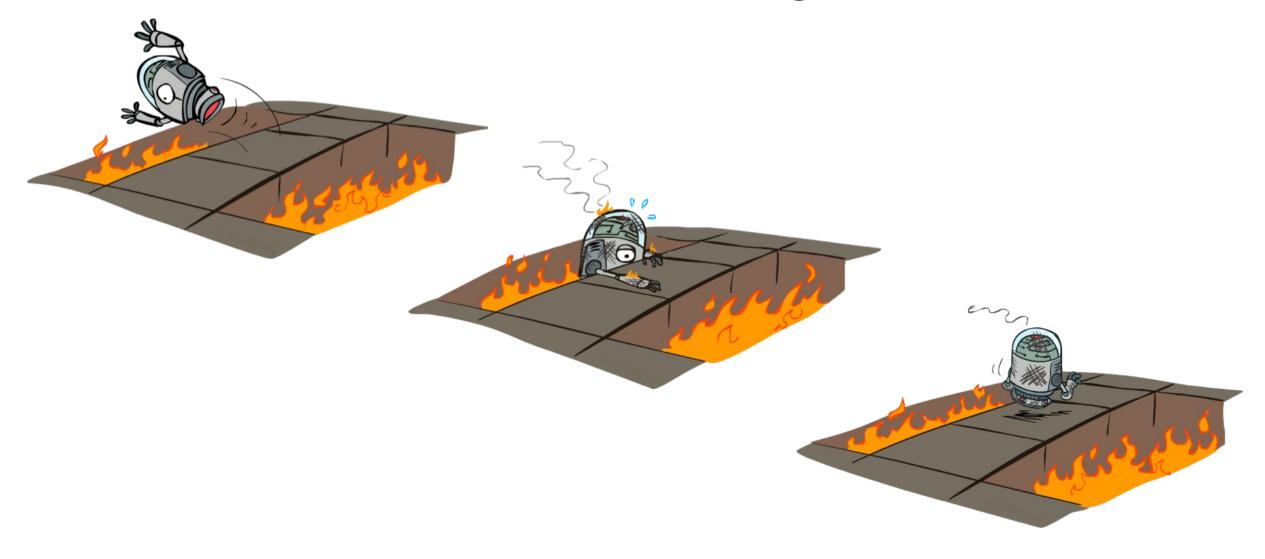
$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

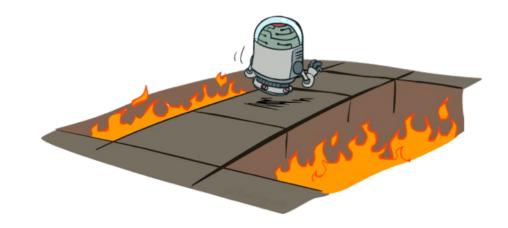


Active Reinforcement Learning



Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values



• In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning (Watkins, 1989)

Q-Learning: sample-based Q-value iteration

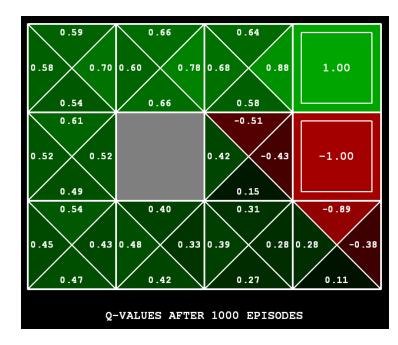
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$$



[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Q-Learning

```
Algorithm 2 Q-learning (off-policy TD control) for estimating \pi \approx \pi_{\star}
Parameters: Learning rate \alpha \in (0,1], small \epsilon > 0
 1: Initialize Q(s, a) for all s \in \mathcal{S}^+, a \in \mathcal{A}(s) and Q(terminal) = 0
 2: for each episode: do
        Initialize S
 3:
        while S is not terminal: do
            Take action A using a policy derived from Q (\epsilon-greedy)
 5:
            Observe R, S'
 6:
            Update Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
            S \leftarrow S'
        end while
 9:
10: end for
```

Pseudo-code for the Q-learning algorithm, reproduced from Reinforcement Learning, an introduction [4]

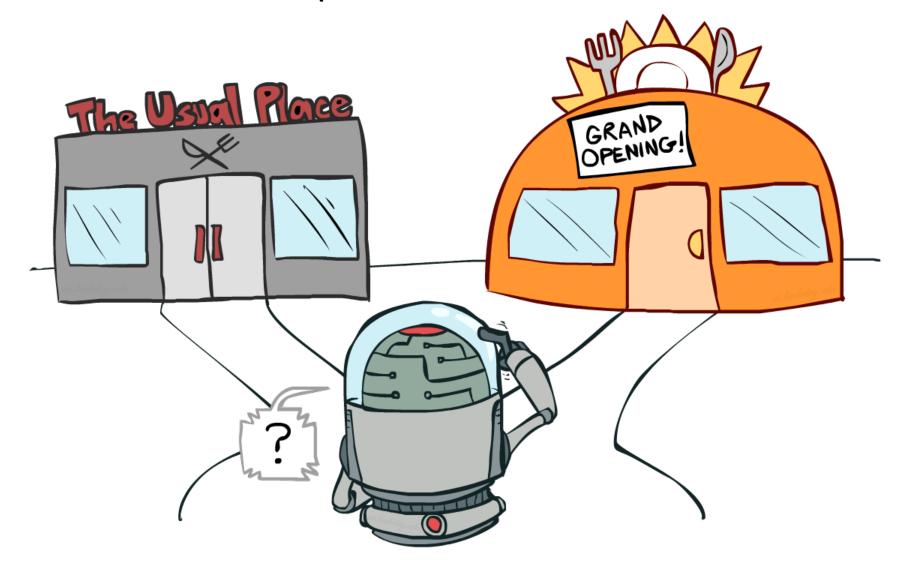
Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation



How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

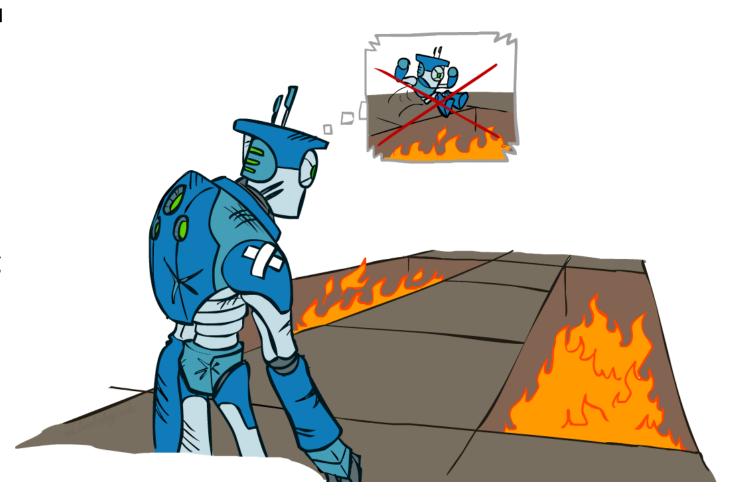
Regular Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$

• Note: this propagates the "bonus" back to states that lead to unknown states as well! Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))$

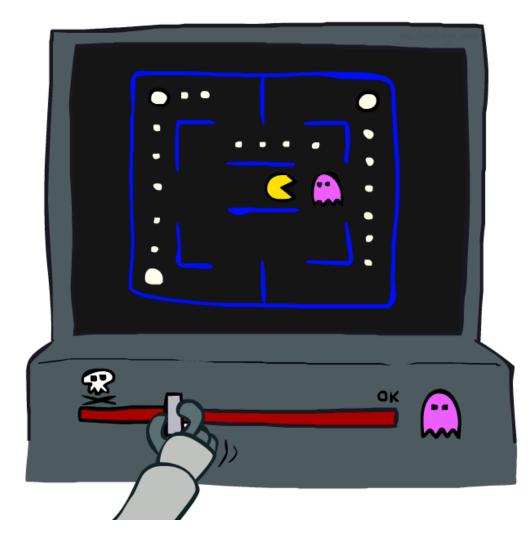
Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

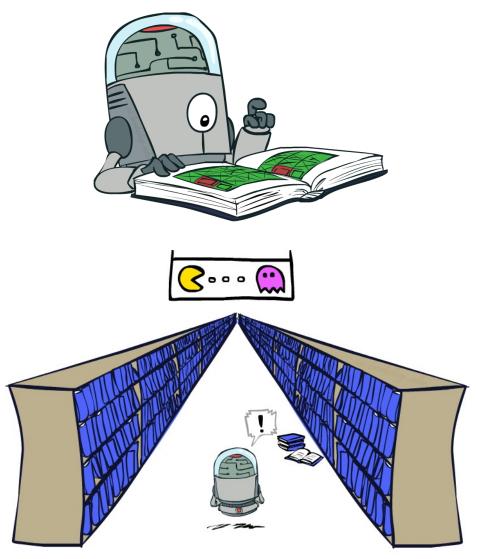


Approximate Q-Learning



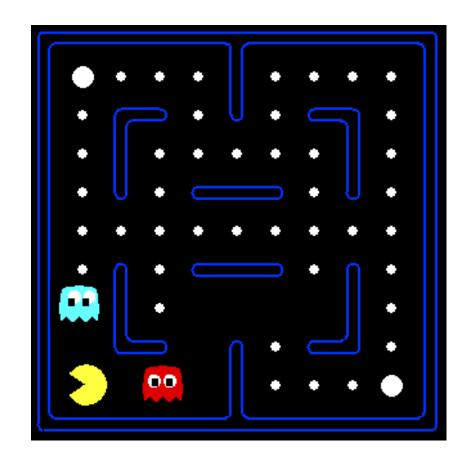
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$
$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

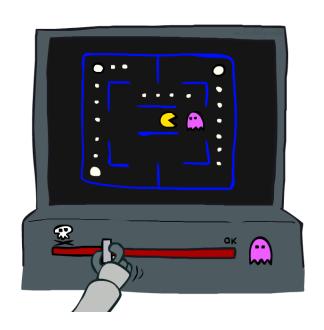
Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

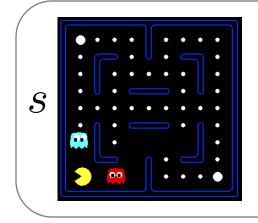
Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} &= (s, a, r, s') \\ & \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad \begin{aligned} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned} \quad \text{Approximate Q's} \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

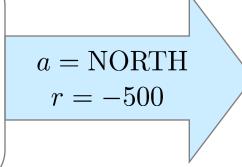


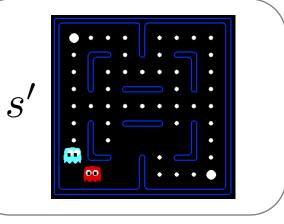
Example: Q-Pacman
$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$



$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$





$$Q(s',\cdot)=0$$

$$Q(s, NORTH) = +1$$

$$r + \gamma \max_{s} Q(s', a') = -500$$

$$r + \gamma \max_{a'} Q(s', a') = -500 + 0$$

$$difference = -501$$

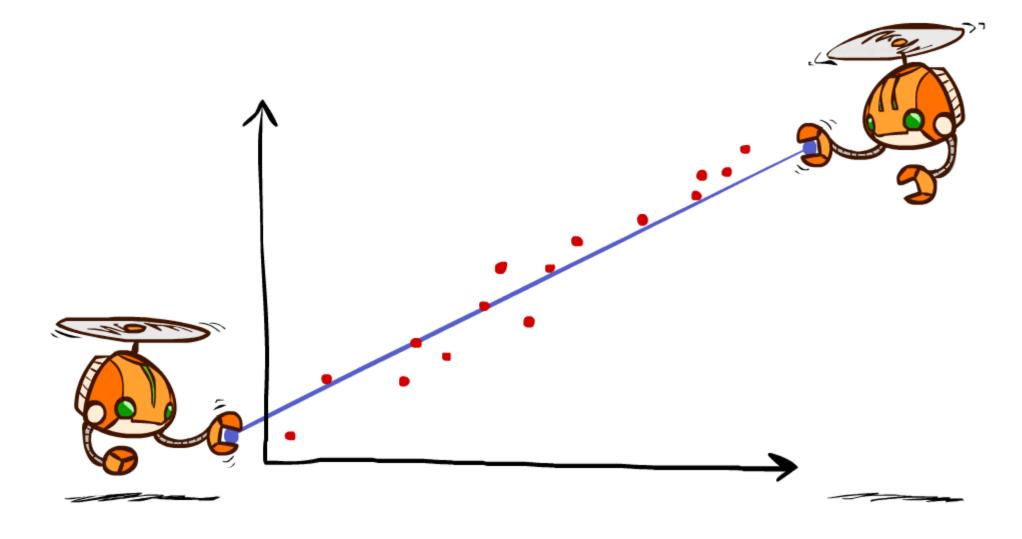
$$w_{DOT} \leftarrow 4.0 + \alpha [-501] \, 0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha [-501] \, 1.0$

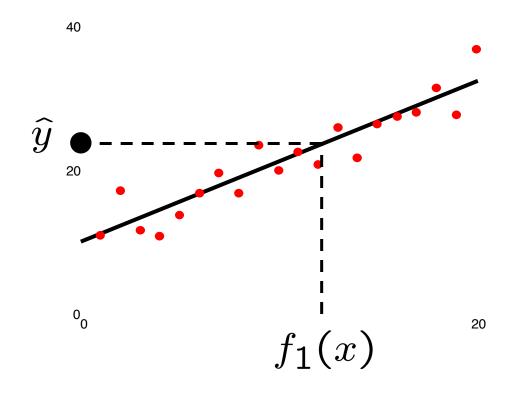
$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

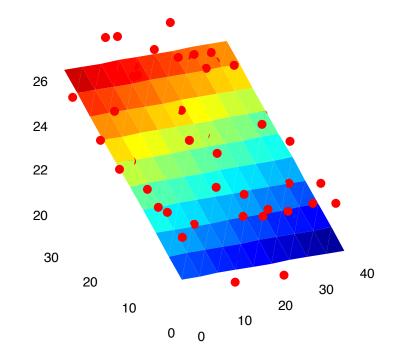
Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares



Linear Approximation: Regression*





Prediction:

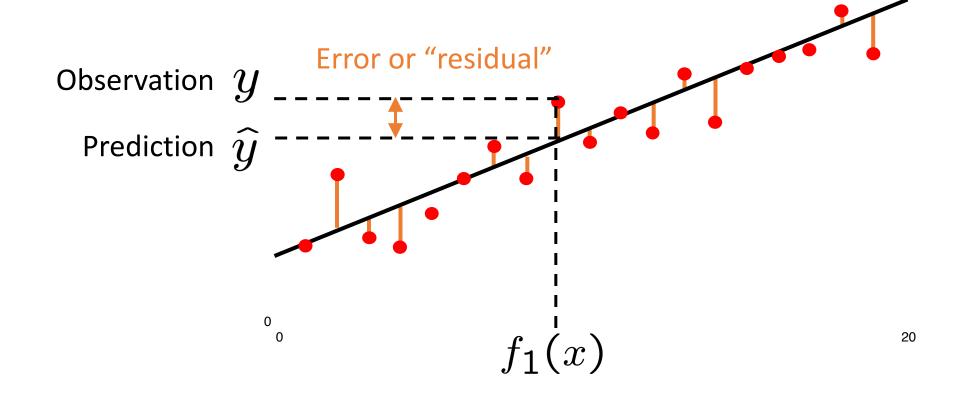
$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i)\right)^2$$



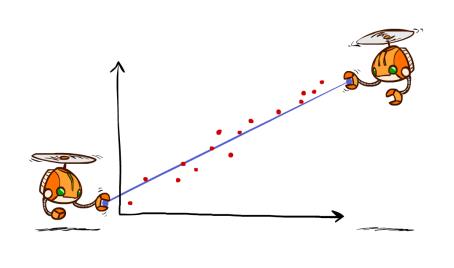
Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

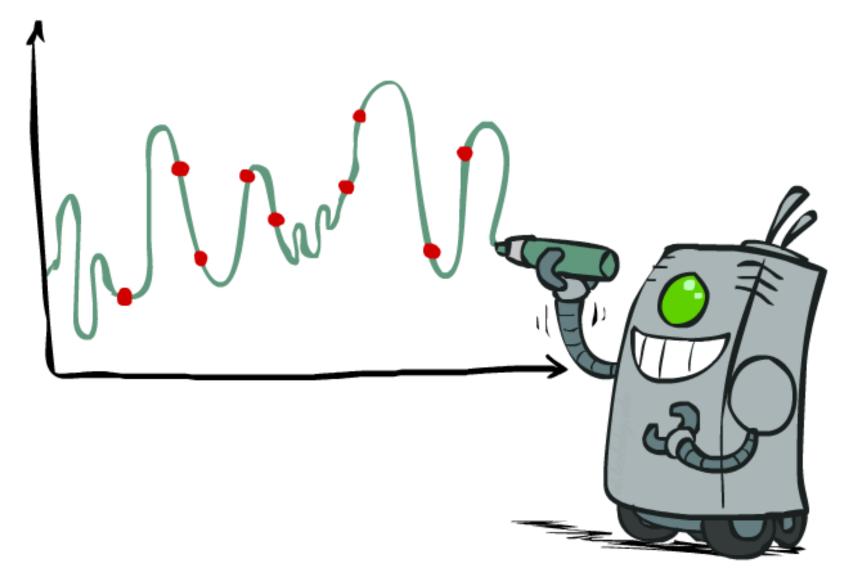
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$



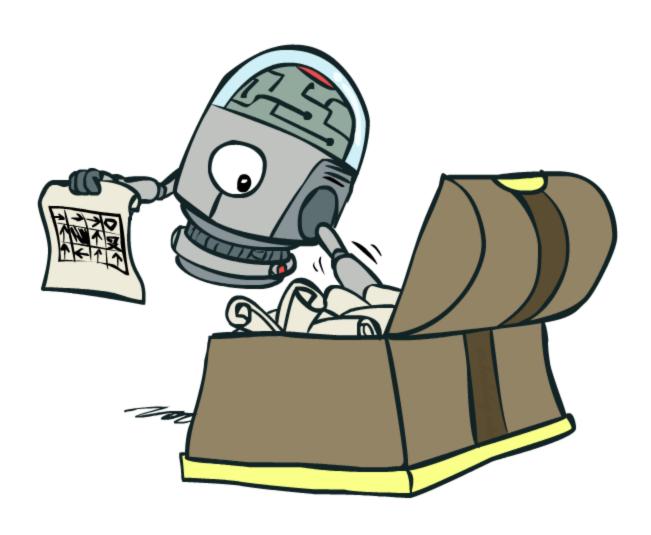
Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*



Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Thanks... and good luck!