CS 188: Artificial Intelligence

Markov Decision Processes (cap. 17)

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes
 An MDP is defined by:

A set of statess € S

A set of actionsa € A

A transition function T(s, a, s’)
* Probability that a from s leadsto s/, i.e., P(s’| s, a)
* Also called the model or the dynamics

A reward function R(s, a, s’)
* Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

 MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
* WEe’'ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

* “Markov” generally means that given the present state, the future
and the past are independent

* For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l = 3/|St — StaAt = Ay, Si—1 = St—1,At—1, .50 = So)

Andrey Markov
P(St_|_1 = 8/|St = S¢, At = Clt) (1856-1922)

* This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

* |In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

* For MDPs, we want an optimal policy n*: S - A
* A policy 7 gives an action for each state

* An optimal policy is one that maximizes expected
utility if followed

* An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
* Expectimax didn’t compute entire policies for all non-terminals s
* It computed the action for a single state only

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward

Slow

0.5

Overheated

Racing Search Tree

MDP Search Trees

* Each MDP state projects an expectimax-like search tree

P A

S

,a
’ /—> (s,a,s’) called a transition
T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

N\

=

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

* Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (t depends on time left)

= Discounting: use0<y<1

©.@)
U(lro,...roc]) = > vry < Rmax/(1 —7)
t=0
= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Stationary Preferences

* Theorem: if we assume stationary preferences:

[al,ag, ..] — [bl,bg, ..]

0

[Tv a1,dz, ..] >~ [T, bl,bg, ..]

* Then: there are only two ways to define utilities

« Additive utility: U([rg,r1,72,...]) = rg

* Discounted utility: U ([rg,r1,72,...]) = 10 -

-yry R

Utilities of Sequences

Utilities of Sequences

* What preferences should an agent have over reward sequences?

 Moreor less? [2,3,4] or [1,2,2]

* Now or later? [1,0,0] or [O,O0, 1] @

S

| N

g

C BT O

Discounting

* It’s reasonable to maximize the sum of rewards
* It’s also reasonable to prefer rewards now to rewards later
* One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

e How to discount?

* Each time we descend a level, we
multiply in the discount once

* Why discount?

* Sooner rewards probably do have
higher utility than later rewards

e Also helps our algorithms converge

e Example: discount of 0.5
* U([1,2,3]) =1*1+0.5%2 + 0.25*3
 U([1,2,3]) < U([3,2,1])

Quiz: Discounting
e Given: 10 1

a b C d e
» Actions: East, West, and Exit (only available in exit states a, €)

 Transitions: deterministic
* Living reward O

* Quiz 1: For y =1, what is the optimal policy? 10

* Quiz 2: For y=0.1, what is the optimal policy? 10

* Quiz 3: For which y are West and East equally good when in state d?

Recap: Defining MDPs

* Markov decision processes:
e Set of states S

Start state s,

Set of actions A o

Transitions P(s’|s,a) (or T(s,a,s’))

Rewards R(s,a,s’) (and discount v)

* MDP quantities so far:
* Policy = Choice of action for each state
e Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

V*(s) = expected utility starting in s and s is a
acting optimally state
a” (s, a)is a
The value (utility) of a g-state (s,a): P < g-state
Q’*(s,a) = expected utility starting out o N
having taken action a from state s and (s,a,8") is a
transition

(thereafter) acting optimally

n'(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demao — Gridworld V Values

GCridworld Display

..

“

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount =1

Living reward =0

Cridworld Display

Snapshot of Dema — Gridworld \/ Valuyes

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Cr(jﬂgi_)gjy\/\/nrld 0O Valyes

el
s

V..
PP

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
D nt=0.9
Living reward =0

Snapshot of Demo — (Gri)dwnrld \V/ Valyes

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =-0.1

Optimal Policies

Values of States

* Fundamental operation: compute the (expectimax) value of a state
* Expected utility under optimal action
* Average sum of (discounted) rewards)
* This is just what expectimax computed! o

* Recursive definition of value:
V¥ (s) = max Q* (s, a)

QR*(s,a) =) T(s,a, s {R(s, a,s’) + WV*(S,)}

V*i(s) = mC?XZT(S’ a,s) {R(s,a, s") + ny*(S’)}

S

Racing Search Tree

Racing Search Tree

OV THEANTERAE TRERRE T TERRE TR

Racing Search Tree

* We're doing way too much work
with expectimax!

* Problem: States are repeated

e |Idea: Only compute needed
guantities once

* Problem: Tree goes on forever

* |dea: Do a depth-limited
computation, but with increasing

N RN
depths until change is small
* Note: deep parts of the tree
eventually don’t matterify<1

R CUORNEERE CENRT CHETEIE EHLRME TR

———
—
—
-

Time-Limited Values

* Key idea: time-limited values

* Define V,(s) to be the optimal value of s if the game ends in
k more time steps

* Equivalently, it’s what a depth-k expectimax would give from s

& Vo(@)
o 7\‘
& & &
o o O \‘i)

[Demo — time-limited values (L8D6)]

Value |teration

Value |teration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:
Vig1(s) < max > T(s,a,5) |R(s,a,5) + v V(s
S,

Repeat until convergence

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
* Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do

Example: Value Iteration

|

} ‘I()Q Overheatéd
Assume no discount!
0 0 / / /
Viet1(8) méasz(s, a,s') [R(s, a,s)+ v Vi(s)]
/

S

Vig1(s) < max>_T(s,a,s") [R(s,a,s") + 7 Vi(s)]

Example: Value Iteration

S

Overheated

Assume no discount!

E85) = max((1*(1+40)), (0.5 *(2 + 0) + 0.5%(2 + 0))) = 2

7 { 0 0 0 } VA
V_1(é8) = max((0.5 * (1 +0) + 0.5 *(1+0)), (1* -10)) = 1

V_1ﬁl)"= max (0) = 0

Vig1(s) < max>_T(s,a,s") [R(s,a,s") + 7 Vi(s)]

Example: Value Iteration

S

Overheated

Assume no discount!
V_1(8a5) = max((1*(1+2)), (0.5 *(2 + 2) + 0.5%(2 + 1))) = 3.5
Vo 0 0 0 \
V_1(68) = max((0.5 *(1 + 2) + 0.5 *(1 +1)), (1* -10)) = 2.5

V_1(“)= max (0) =0

K

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Recap: MDPs

* Markov decision processes:
e States S
* Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
* Rewards R(s,a,s’) (and discount vy)
* Start state s,

* Quantities:
* Policy = map of states to actions
 Utility = sum of discounted rewards
* Values = expected future utility from a state (max node)
* Q-Values = expected future utility from a g-state (chance node)

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2yKeep being optimal

o

=

The Bellman Equations

* Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s) [R(S, a,s’) + ny*(s’)}

V*(s) = mC?XZT(s, a,s) {R(s,a, s + ’}/V*(S,)]

S

* These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Value lteration

* Bellman equations characterize the optimal values:

V*i(s) = mngT(s, a,s) {R(s,a, s") + ny*(s/)}

S

* Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

 Value iteration is just a fixed point solution method

* ...though the V, vectors are also interpretable as time-limited values

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7t says to do

-"s,a,S

,‘A
A s

* Expectimax trees max over all actions to compute the optimal values

* If we fixed some policy nt(s), then the tree would be simpler — only one action per state
 ...though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

* Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

* Define the utility of a state s, under a fixed policy =:
V™(s) = expected total discounted rewards starting in s and following &t

* Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V()]

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vig1(8) < > T(s,7m(s), sH[R(s,m(s),s") + V()]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
* Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

* Let’s imagine we have the optimal values V*(s)

e How should we act?
* |t’s not obvious!

* We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

* This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

* Let’s imagine we have the optimal g-values: >4>4>
% A
« Completely trivial to decide! A A

* Important lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

* Value iteration repeats the Bellman updates:
Vig1(s) < max > T(s,a,s') |R(s,a,s) + 7 Vi (s))]

* Problem 1: It’s slow — O(S2A) per iteration
* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

K

VALUES AFTER O ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

5

Cridworld Display

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Cridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

K

Gridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER

10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

Cridworld Display

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

k=100

Gridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Policy Iteration

 Alternative approach for optimal values:

 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

» Step 2: Policy improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

* Repeat steps until policy converges

* This is policy iteration
* |t’s still optimall
e Can converge (much) faster under some conditions

Policy Iteration

* Evaluation: For fixed current policy =, find values with policy evaluation:
* Iterate until values converge:

Vit 1 (s) < ZT(s mi(s), ') |R(s,mi(s),s") + vV (s))]

* Improvement: For fixed values, get a better policy using policy extraction
* One-step look-ahead:

mi+1(s) = arg maxZT(s, a,s) [R(s, a,s’) + 'yVWi(S’)}

S,

Algorithm 2: Value Iteration Algorithm

Data: #: a small number
Result: 7: a deterministic policy s.t. © = 7,
Function Valuelteration is
/* Initialization */
[nitialize V'(s) arbitrarily, except V{terminal);
V(terminal) + 0;
/* Loop until convergence */

Value A0
y while A < ¢ do
|te rath N for cach s € S do
v V(s):
V(s) + max, E\r p(s',r|s,a)[r + vV (s'));

A+ max(A, v — V(s)]):
end

end
/* Return optimal policy */
return 7 s.t. m(s) = argmaxy Y_ . . p(s',r|s,a)[r + 4V (5')];

end

Value

lteration

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a),
rewards R(s, a, s’), discount
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
0, the maximum relative change in the utility of any state

repeat
U«—U';6+0
for each state s in S do
U'[s] <~ max, ¢ a(sy Q-VALUE(mdp,s,a, U)
if |U'[s] — Uls]| > dthend<«+ |U'[s] — Uls]|
until 6 < €(1 —7)/y
return U

Figure 17.6 The value iteration algorithm for calculating utilities of states. The termination
condition is from Equation (??).

Policy

lteration

Algorithm 1: Policy Iteration Algorithm

Data: #: a small number
Result: V: a value function s.t. V = v,, m: a deterministic policy
st m=m,
Function Policylteration is
/* Initialization */
Initialize V'(s) arbitrarily;
Randomly initialize policy (s);
/* Policy Evaluation */
A« 0
while A < ¢ do
for each s € S do
v Vi(s):
Vi(s) + Yo opls r|s.m(s))[r +yVI(s)]:
A — max(A, |v = V(s)):
end

end
/* Policy Improvement */
policy-stable « true;
for cach s € S do
old-action « w(s);
m(s) ¢ argmax, Y . p(s'.r|s, a)[r + 4V (s")];
if old-action != 7(s) then
policy-stable < false;
end

end
if policy — stable then
‘ return V' = v, and © = «,;
else
I go to l)()li(')’ E\'alualiuu:
end
end

Policy

lteration

function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a)
local variables: U, a vector of utilities for states in S, initially zero
m, a policy vector indexed by state, initially random

repeat
U <~ POLICY-EVALUATION(7, U, mdp)
unchanged? < true
for each state s in S do
a* + argmax Q-VALUE(mdp, s, a, U)
a€ A(s)
if Q-VALUE(mdp, s, a*,U) > Q-VALUE(mdp, s,n[s], U) then
7[s] < a*; unchanged? + false
until unchanged?
return 7

Figure 17.9 The policy iteration algorithm for ca Fotolibri - Google Foto
https://photos.google.com/photobooks

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
e Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

* We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

» After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

* SO0 you want to....
* Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
e Turn your values into a policy: use policy extraction (one-step lookahead)

* These all look the same!
* They basically are — they are all variations of Bellman updates
* They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

e Actions: Blue, Red

e States: Win, Lose

-~

No discount

100 time steps

Both states have
the same value

\

Offline Planning

* Solving MIDPs is offline planning e ™

No discount

* You determine all quantities through computation

. 100 time steps
* You need to know the details of the MDP

Both states have

* You do not actually play the game! the same value
/ Value \
Play Red 150
Play Blue 100

_ /

Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

Online Planning

* Rules changed! Red’s win chance is different.
?7? SO

Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

What Just Happened?

* That wasn’t planning, it was learning!
 Specifically, reinforcement learning
* There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

* Exploration: you have to try unknown actions to get information
Exploitation: eventually, you have to use what you know
Regret: even if you learn intelligently, you make mistakes
Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

CS 188: Artificial Intelligence

Reinforcement Learning (cap. 22)

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

Agent
Rz’f/;%? r Actions: a
Environment
* Basic idea:

* Receive feedback in the form of rewards

* Agent’s utility is defined by the reward function

* Must (learn to) act so as to maximize expected rewards
* All learning is based on observed samples of outcomes!

Example: Learning to Walk
||

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Reinforcement Learning

e Still assume a Markov decision process (MDP):
 Asetof statess €S
* A set of actions (per state) A
A model T(s,a,s’)
* Areward function R(s,a,s’)

* Still looking for a policy 7(s) ool overnenad

* New twist: don’t know T or R
* |.e. we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

Offline (I\/IDPS) vs. Online (RL)

r*

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
e Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
* Count outcomes s’ for each s, a 7'(s, a, s)
 Normalize to give an estimate of
* Discover each R(s, a, 3’) when we experience (s, a, s’) ‘(

 Step 2: Solve the learned MDP

* For example, use value iteration, as before

Example: Model-Based Learning

Input Policy m

Assume:y=1

Observed Episodes (Training)

Episode 1

o

~
B, east, C, -1

C, east, D, -1

[+
D, exit, X, 10/

Episode 3

o

: E, north, C, -1

~

C,east, D, -1
' +
D, exit, x,+10 y

Episode 2

o

~
B, east, C, -1

C, east, D, -1

[+
D, exit, X, 10/

Episode 4

o

: E, north, C, -1

~

C, east, A, -1
A, exit, X, -10/

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00

T(C, east, D) =0.75
T(C, east, A) =0.25

o

~

)

R(s,a,s")

(" R(B, east, C) = -1
R(C, east, D) =-1
R(D, exit, x) = +10

o

~

)

Example: Expected Age

Goal: Compute expected age of cs188 students

d Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a;, a5, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this \7 Pla) = num(a) Z Why does this
work? Because N BlA] ~ 1 Za' work? Because
eventually you X N &=~"" samples appear
learn the right ElA] = Z P(a)-a Z with the right

model. a j \ frequencies.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

» Simplified task: policy evaluation
* Input: a fixed policy 7(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
e Goal: learn the state values

* In this case:
* Learner is “along for the ride”
 No choice about what actions to take

 Just execute the policy and learn from experience
* This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

e Goal: Compute values for each state under &t

* |dea: Average together observed sample values
e Act accordingtom

* Every time you visit a state, write down what the
sum of discounted rewards turned out to be

* Average those samples

* This is called direct evaluation

Example: Direct Evaluation
Input Policy & Observed Episodes (Training) Output Values

Episode 1 Episode 2

g B, east, C, -1 N B, east, C, -1 -

C, east, D, -1 C, east, D, -1
D, exit, x, +10 y D, exit, x, +10 y

- -

Episode 3 Episode 4

: E, north, C, -1 N E, north, C, -1 A

C,east, D, -1 C, east, A, -1

Assume:y=1 i + i -
kD’ exit, X, 1oj A, exit, X, 1OJ

-

Problems with Direct Evaluation

* What’s good about direct evaluation? Output Values
* |t’s easy to understand
* It doesn’t require any knowledge of T, R

* |t eventually computes the correct average values,
using just sample transitions

* What bad about it?

* |t wastes information about state connections
* Each state must be learned separately
* So, it takes a long time to learn

If Band E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

* Simplified Bellman updates calculate V for a fixed policy:
* Each round, replace V with a one-step-look-ahead layer over V

Vo(s) =0 @ s 7(s)

Vi () « ST (s, w(s),) R(s, (), 8') +AVE(s)]_sials)s

* This approach fully exploited the connections between the states
* Unfortunately, we need T and R to do it!

* Key question: how can we do this update to V without knowing T and R?
* In other words, how to take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

* We want to improve our estimate of V by computing these averages:

Via1(8) ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s’)]

S

* |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 8/1) -+ WV/{W(Sll)
sampley = R(s,7(s), s5) + vV (s5) »
samplen, = R(s, m(s), an) + WV/gW(S;z) %

1
Via1(8) -) sample;
()

Temporal Difference Learning

Temporal Difference Learning

Let suppose: S
* V(1,3)=0.84 and V(2,3) = 0.92

7t(s
Any time the transition ((1,3), ((1,3)),(2,3)) occurs, we have s)
* V(1,3) =-0.04 +V(2,3) = 0.88 s, Ti(s)
This entails that the current esteem is too small and it is better to ANE-

increase it.

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) < V™(s) + a(sample — V™ (s))

Temporal Difference Learning

* Big idea: learn from every experience!
* Update V(s) each time we experience a transition (s, a, s’, r)
* Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) < V™(s) + a(sample — V™ (s))

TD Learning

Algorithm 1 Tabular TD(0) for estimating v,
Input: Policy 7 to be evaluated Parameters: Learning rate o € (0, 1]

1: for each episode: do

2 Initialize S

3 while S is not terminal: do

4 Take action A given by 7(a|S)
5

Observe R, S’

6: Update V(S) <+ V(S) + a[R+~V(S") — V(S5)]
7: S« 5

8: end while

9: end for

Pseudo-code for the TD(0) algorithm, reproduced from Reinforcement Learning, an introduction [4]

Exponential Moving Average

* Exponential moving average
* The running interpolation update: 7 — (1—a) Tp_1+a-z,

* Makes recent samples more important:
Tp+(1—a) Tp1+(1—a)? zpo+...
1+(1-0o)+(1—a)?+...

* Forgets about the past (distant past values were wrong anyway)

Lp =

* Decreasing learning rate (alpha) can give converging averages

Similarly to the Gradient descent

9,
2\91 = 0, —%-1(91)

If a is too small, gradient descent /7

can be slow.

If ais too large, gradient descent
can overshoot the minimum. It may ——~
fail to converge, or even diverge.

—

Andrew Ng’s course on Coursera

Example: Temporal Difference Learning

States Observed Transitions
[B, east, C, -2 } [C, east, D, -2 }

| o) lofole) [ado]el (a6 e

Assume:y=1,a=1/2
VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) + 4V (s))

Problems with TD Value Learning

e TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

* However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(S, a,s’) + WV(S,)}

* |dea: learn Q-values, not values
* Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happens...

Detour: Q-Value Iteration

* Value iteration: find successive (depth-limited) values
* Start with V,(s) = 0, which we know is right
* GivenV,, calculate the depth k+1 values for all states:

Vig1(s) < max > T(s,a,s") [R(s,a,5") + 7 Vi (s

* But Q-values are more useful, so compute them instead
* Start with Qg(s,a) = 0, which we know is right
* Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) | R(s.0,5) +7 maxQy(s',a)

S

Q-Learning (Watkins, 1989)

* Q-Learning: sample-based Q-value iteration

Qui(s:0) = T, R(s,a,5) +7 maxQu(s,a)|

a

* Learn Q(s,a) values as you go

* Receive a sample (s,a,s’,r) }wqbwqw 100
* Consider your old estimate: Q(s,a) AAA
* Consider your new sample estimate

S |
sample = R(s,a,s’) + ymaxQ(s',a’) A A

. Incorporate:he ne,w’estimateC;/nto a r7unning average: MM

Q-VALUES AFTER 1000 EPISODES

Q(s,a) — (1 —a)Q(s,a) + () [sample]

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning

Algorithm 2 Q-learning (off-policy TD control) for estimating 7 ~ 7,

Parameters: Learning rate a € (0, 1], small € > 0

1: Initialize Q(s,a) for all s € ST, a € A(s) and Q(terminal) =0
2: for each episode: do
SF Initialize S

4: while S is not terminal: do

5: Take action A using a policy derived from @ (e-greedy)

6: Observe R, S’

T: Update Q(S, A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
8: S+ S

9: end while

10: end for

Pseudo-code for the Q-learning algorithm, reproduced from Reinforcement Learning, an introduction [4]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
* ... but not decrease it too quickly S
e Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

b7 7

AND
Srennc!

L £T0
G2

How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

 Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning — Manual Exploration —
Bridge Grid

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

* When to explore?
 Random actions: explore a fixed amount

* Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

* Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

f(u,n) =u-+k/n

Regular Q-Update: Q(s,a) < R(s,a,s") +~ max Q(s',a)

* Note: this propagates the “bonus” back to states that Iead to unknown states as well!
Modified Q-Update: Q(s,a) +—a R(s,a,s") +ymax f(Q(s,a"), N(s,d"))

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function —
Crawler

Regret

* Even if you learn the optimal policy, you
still make mistakes along the way!

e Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

* Minimizing regret goes beyond learning
to be optimal — it requires optimally
learning to be optimal

* Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* |n realistic situations, we cannot possibly learn about

every single state!
* Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* Instead, we want to generalize:
* Learn about some small number of training states from
experience
* Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Feature-Based Representations

* Solution: describe a state using a vector of features
(properties)
* Features are functions from states to real numbers (often
0/1) that capture important properties of the state

* Example features:
* Distance to closest ghost
* Distance to closest dot
* Number of ghosts
e 1/ (dist to dot)?
* |s Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

* Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

* Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wi1f1(s) +wafo(s) + ...+ wnfn(s)
Q(87 CL) — ’(U]_f]_(S, a,)—l—’waQ(S, CL)"— . -‘|‘wnfn(3, a)

* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning
Q(s,0) = wifi(s,@)Fwafo(s, @)+ Fwnfuls,0)

* Q-learning with linear Q-functions:

-

transition = (s,a,r,s’)
difference = [r + 7 max Q(s, a’)] — Q(s,a)
Q(s,a) — Q(s,a) + o [difference] Exact Qs

w; < w; + o [difference] f;(s,a) Approximate Q’s

* [ntuitive interpretation:
* Adjust weights of active features

* E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

* Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) — 1.0fGST(S,CL)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

~

a = NORTH
r = —500

/

Q(s,NORTH) = +1

r + v max Q(s',a’) = -500+0
a

Q(S,a) =0

[difference = —501 >

wpor +— 4.0 + a[-501]0.5
wosy — —1.0 + a[-501] 1.0

Q(Sa a’) — 3°OfDOT(87 CL) — 3°OfGST(87 CL)

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning --
Pacman

Q-Learning and Least Squares

Linear Approximation:

40

20

f1(x)

Prediction:

Yy = wo + wi f1(x)

Regression™

Prediction:

y; = wo + wi f1(x) + wafo(x)

Optimization: Least Squares™

1

2
total error =Y (y; — §:)° =3 (yi - Zwﬁ(w))
, k
[

Observation y

Prediction ?/J\

0 f1(x) i

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = <y - Zwkfm))
k
W k

W = Wm + O (y - Z’wkfk(x)) fm(x)
k
Approximate g update explained:

Wm < Wm + & {"“ + max Q(S/a a’) — Q(s, a)} fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

* Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

* E.g. your value functions from project 2 were probably horrible estimates of future rewards,
but they still produced good decisions

* Q-learning’s priority: get Q-values close (modeling)
* Action selection priority: get ordering of Q-values right (prediction)
* WEe’ll see this distinction between modeling and prediction again later in the course

* Solution: learn policies that maximize rewards, not the values that predict them

* Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

* Simplest policy search:
e Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

* Problems:
 How do we tell the policy got better?
* Need to run many sample episodes!
 If there are a lot of features, this can be impractical

* Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Thanks... and good luck!

