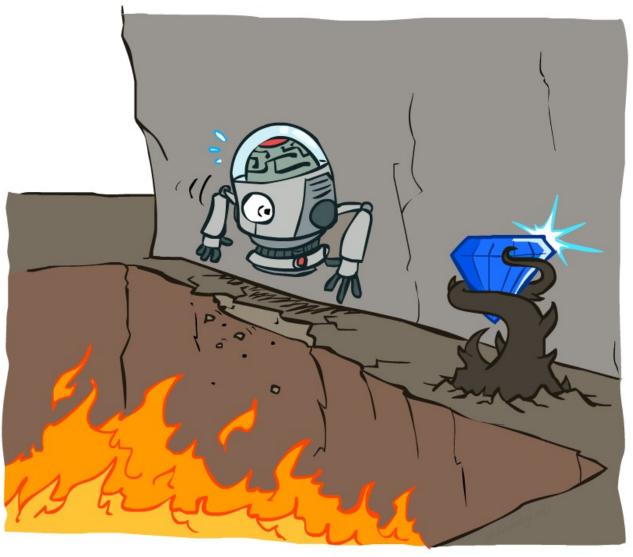
CS 188: Artificial Intelligence Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

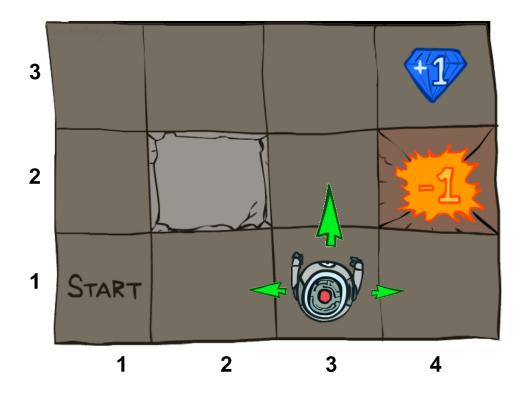
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search



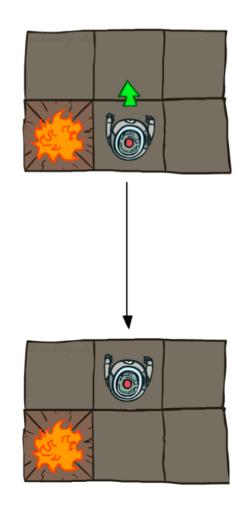
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

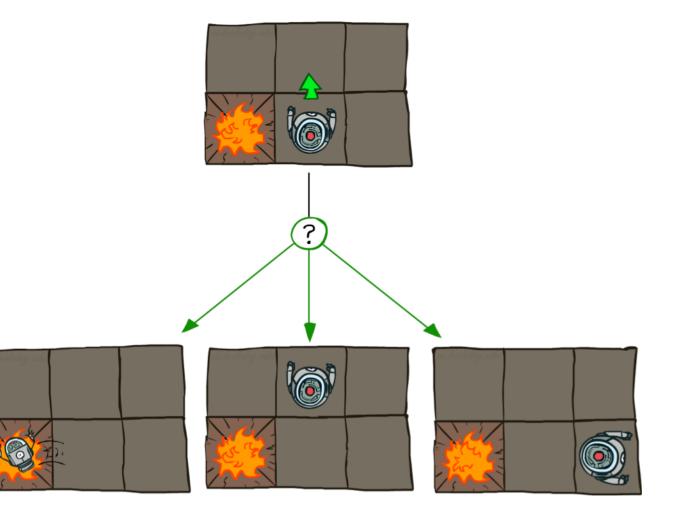


Grid World Actions

Deterministic Grid World

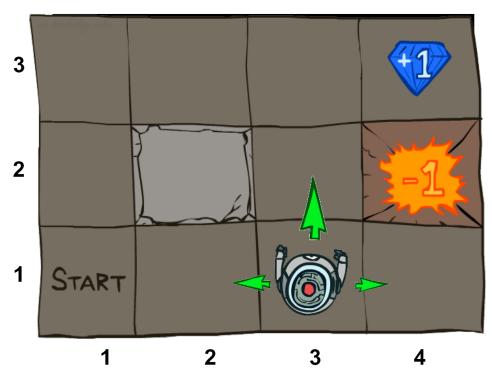


Stochastic Grid World



Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

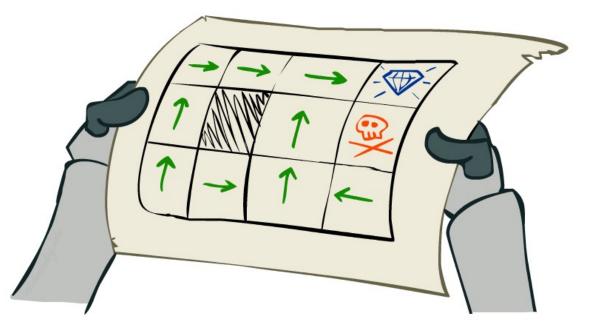
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

Andrey Markov (1856-1922)

- $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$
- This is just like search, where the successor function could only depend on the current state (not the history)

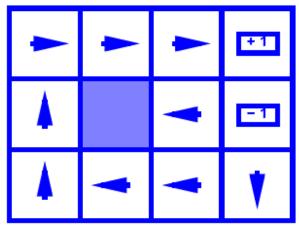
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

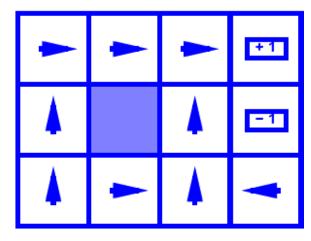


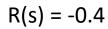
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

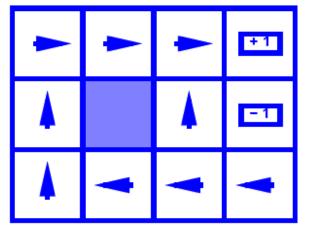
Optimal Policies



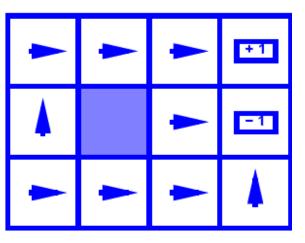
R(s) = -0.01





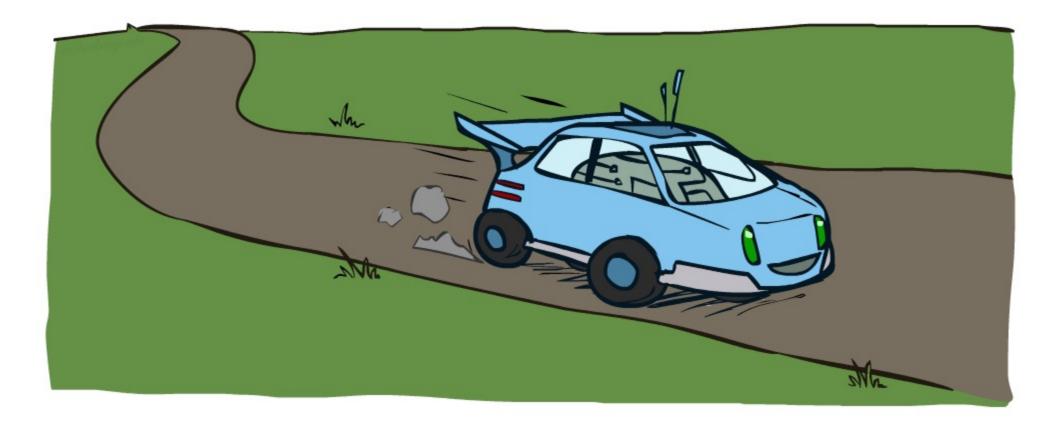


R(s) = -0.03



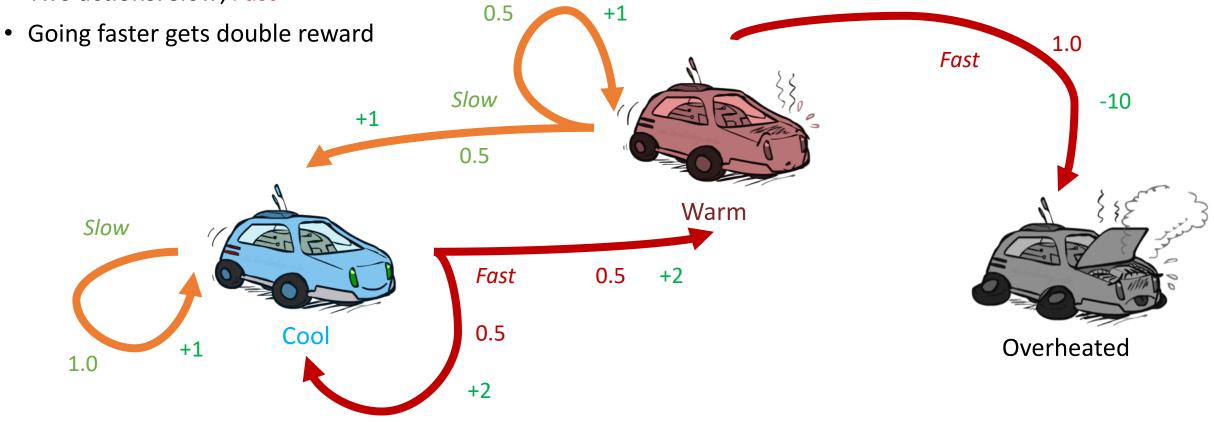
R(s) = -2.0

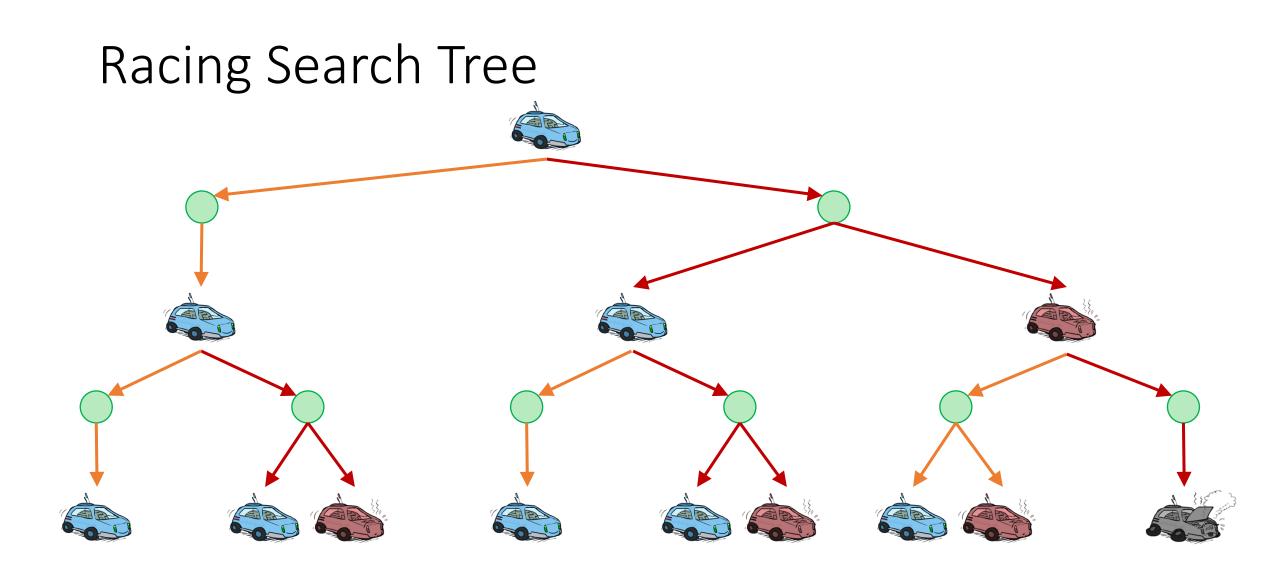
Example: Racing



Example: Racing

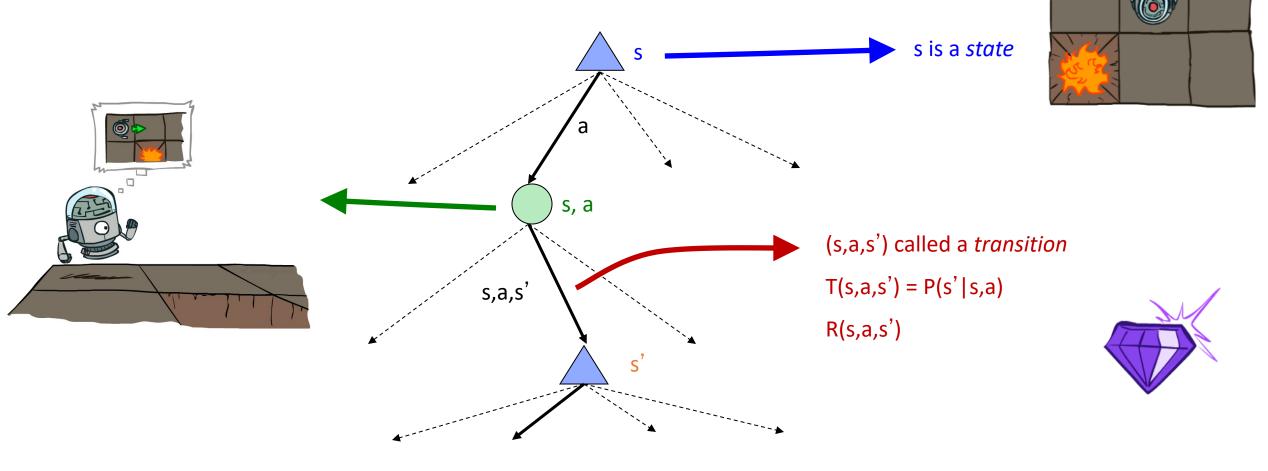
- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*





MDP Search Trees

• Each MDP state projects an expectimax-like search tree

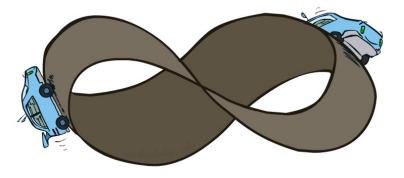


Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

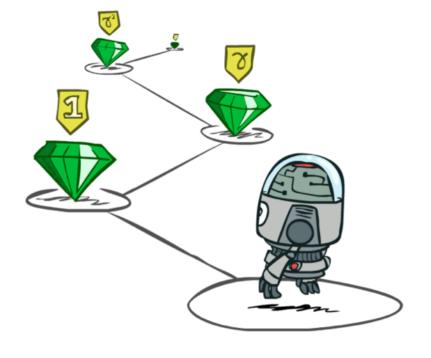


Stationary Preferences

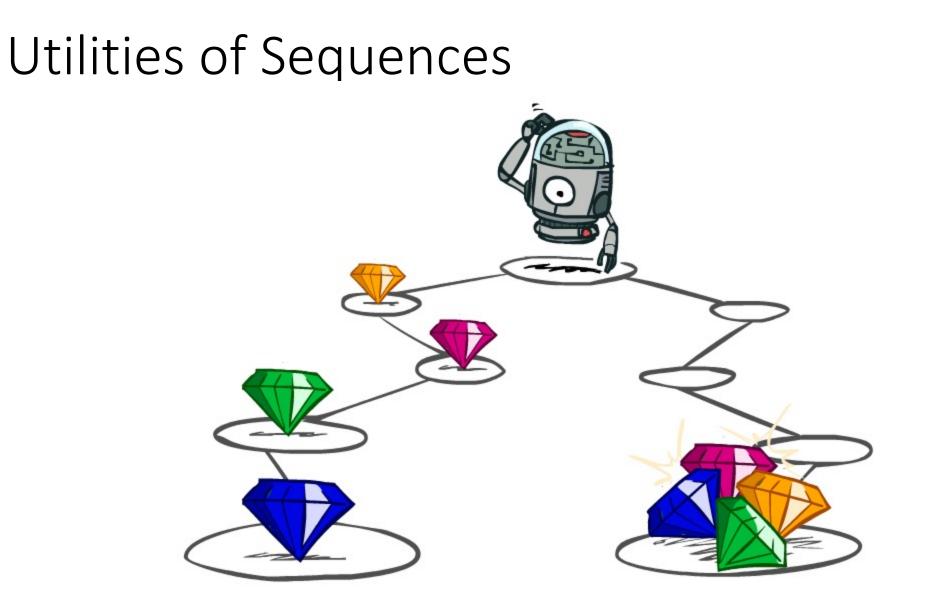
• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

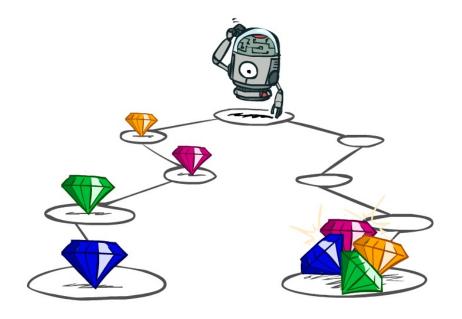


- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [2, 3, 4] or [1, 2, 2]
- Now or later? [1, 0, 0] or [0, 0, 1]

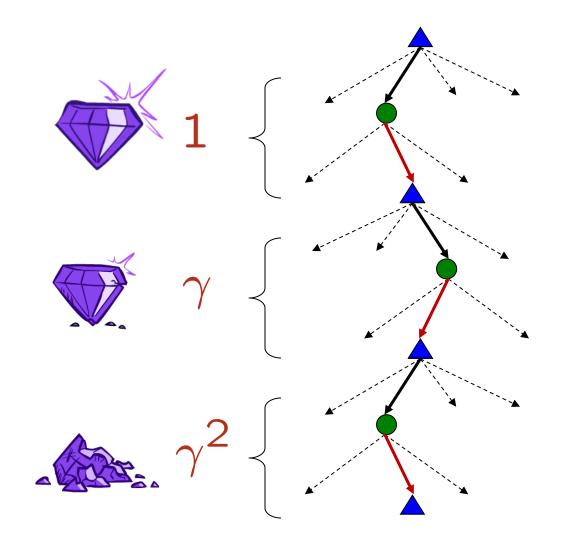


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

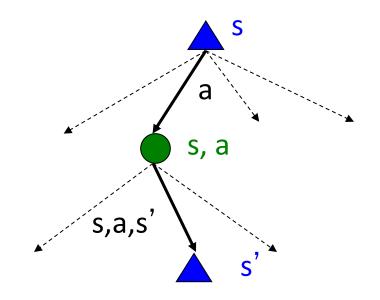
Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

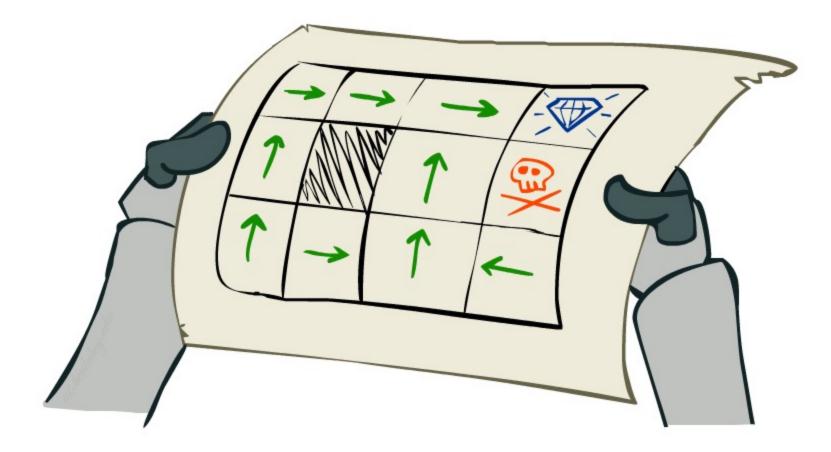


Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



Solving MDPs

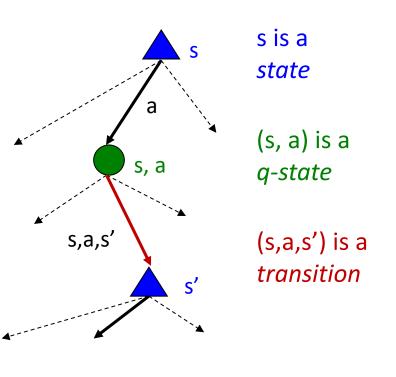


Optimal Quantities

- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s



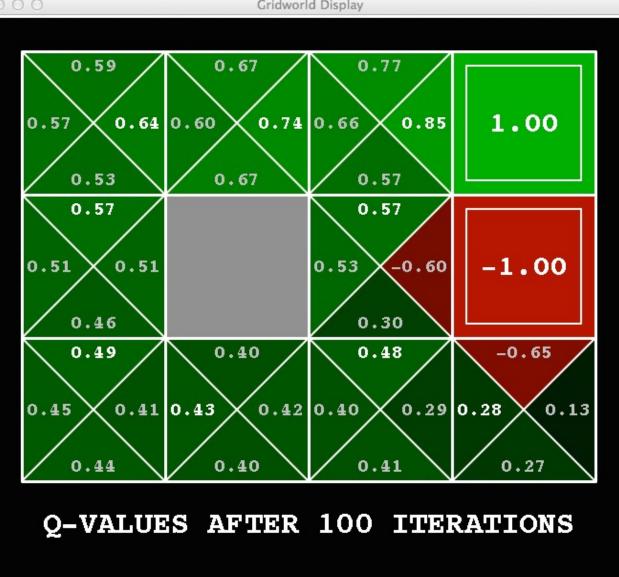
Snapshot of Demo – Gridworld V Values

C C Gridworld Display			
1.00)	1.00 →	1.00 >	1.00
• 1.00		∢ 1.00	-1.00
1.00	∢ 1.00	∢ 1.00	1.00
VALUES AFTER 100 ITERATIONS			

Snapshot of Demo – Gridworld V Values

Gridworld Display			
0.64)	0.74 →	0.85)	1.00
^		^	
0.57		0.57	-1.00
^		^	
0.49	∢ 0.43	0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Snapshot of Demo – Gridworld O Values

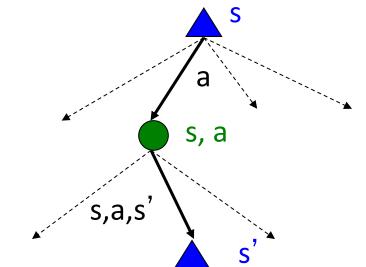


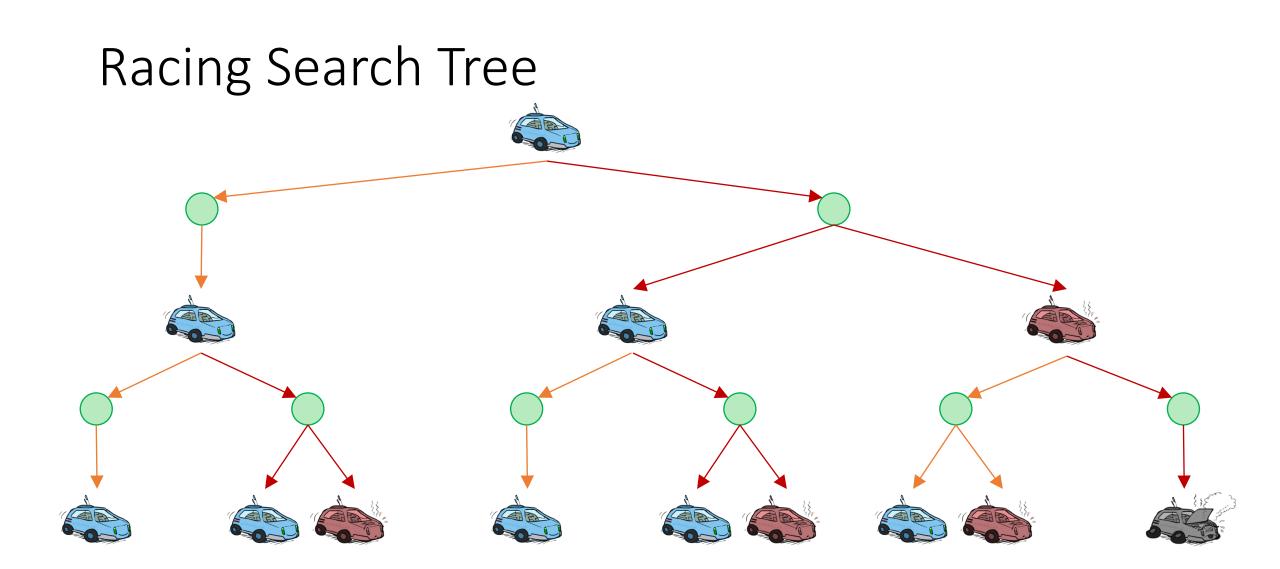
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value: $V^*(s) = \max Q^*(s, a)$

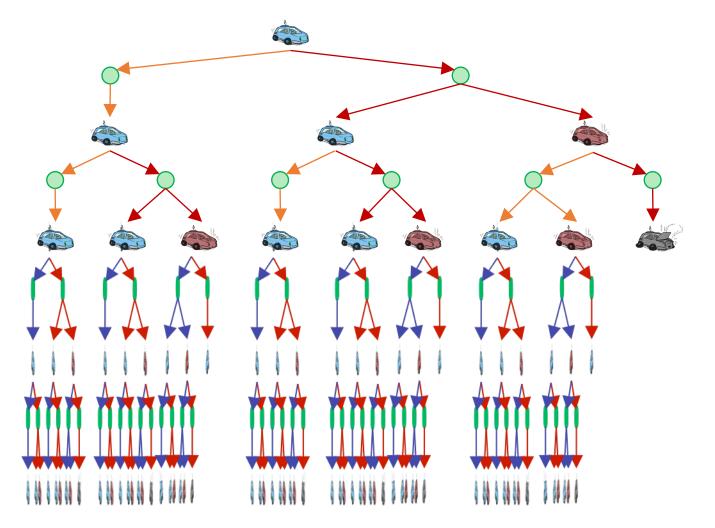
$$V$$
 (s) — $\prod_{a} Q$ (s, a

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') + \gamma V^{*}(s') \right]$$



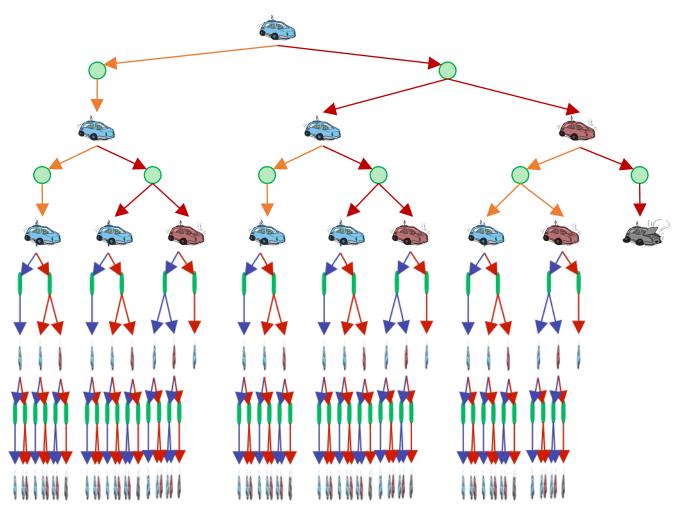


Racing Search Tree

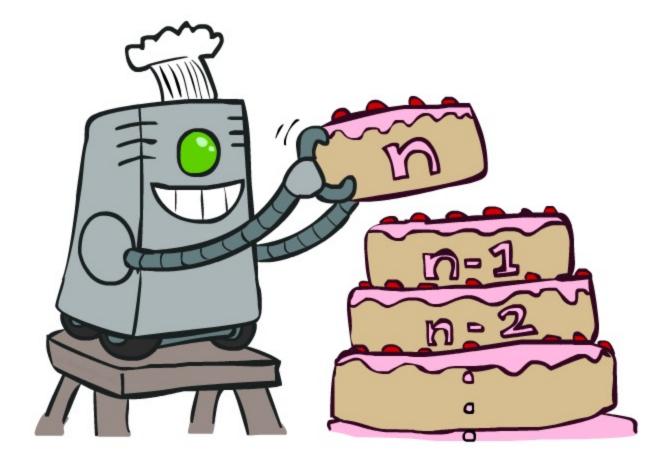


Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



Value Iteration

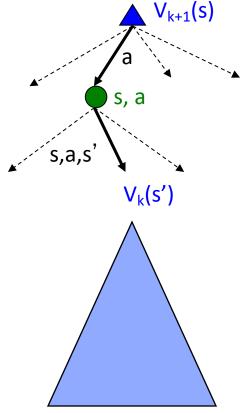


Value Iteration

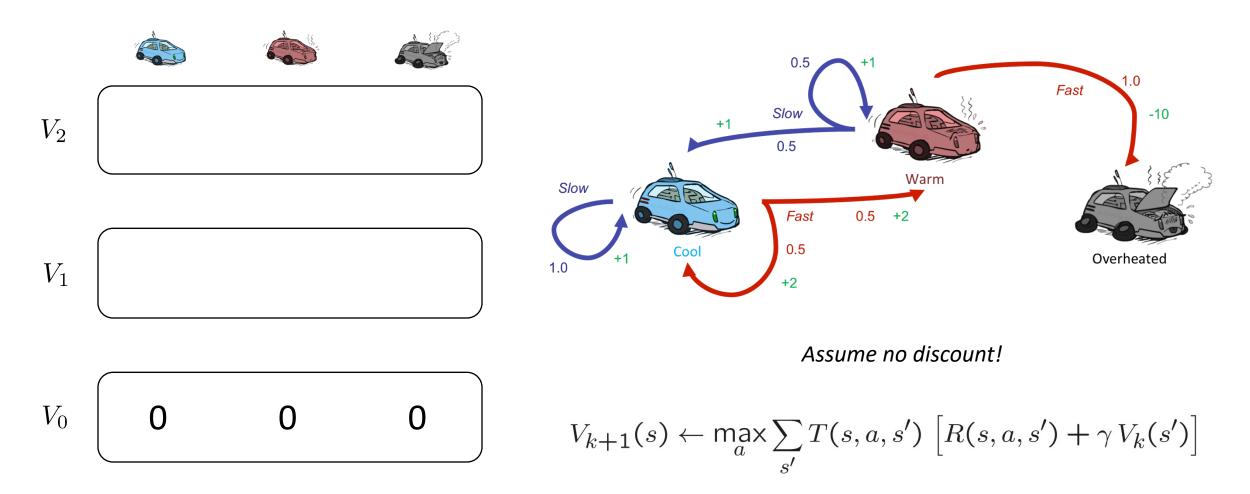
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

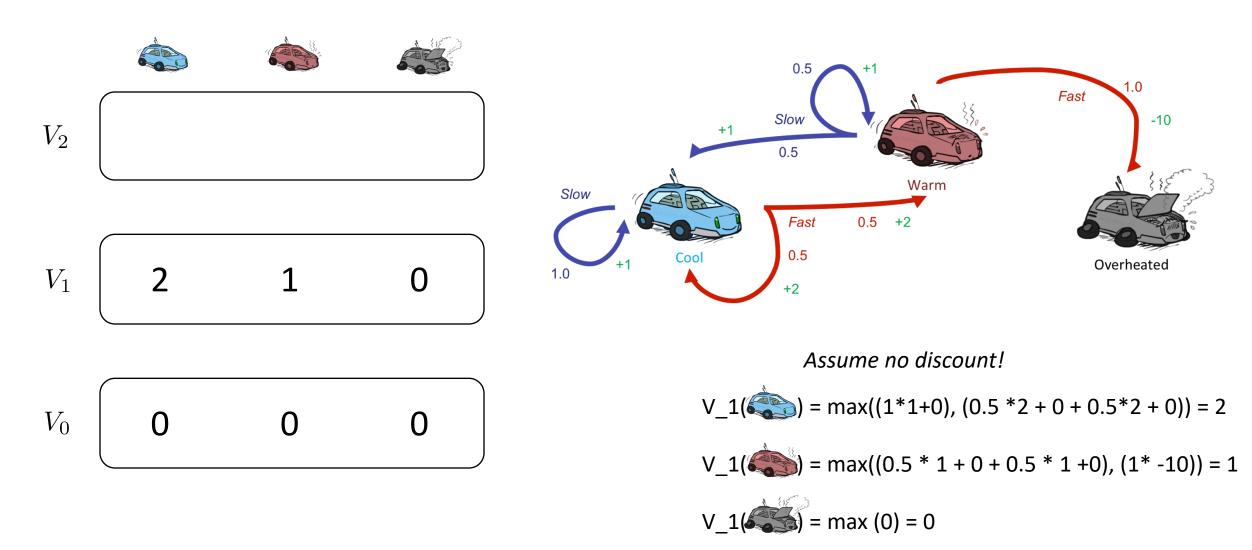


Example: Value Iteration



$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Example: Value Iteration

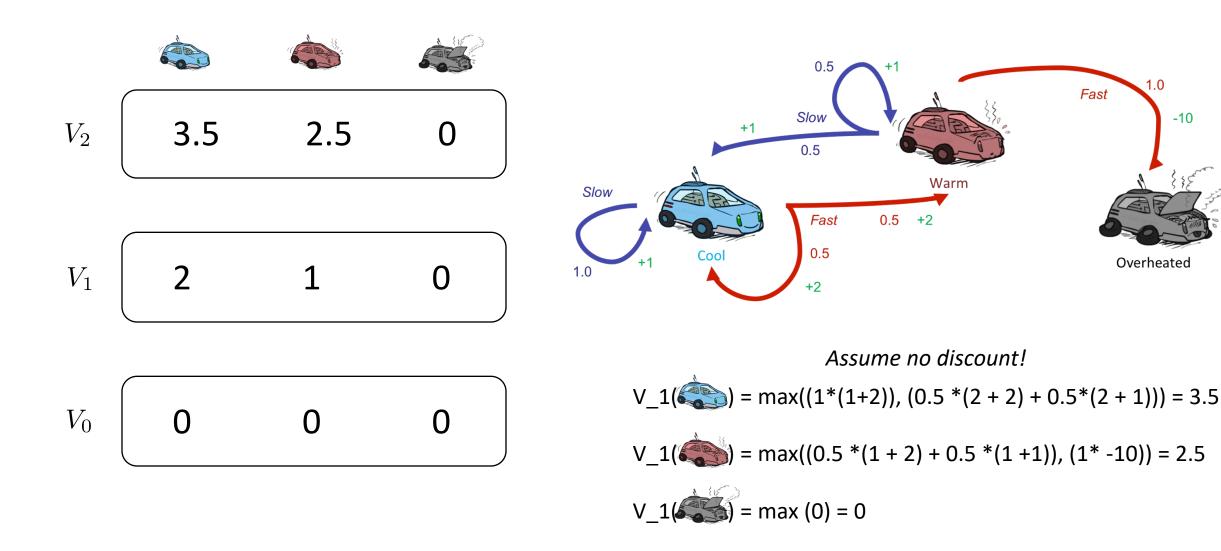


$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Value Iteration

.0

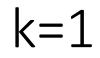
-10

Example: Value Iteration



00	0	Gridworl	d Display	
	^	^	^	
	0.00	0.00	0.00	0.00
	•			
	0.00		0.00	0.00
	^	^	^	
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS



0 0	0	Gridworl	d Display	
	^	^		
	0.00	0.00	0.00 →	1.00
	•		∢ 0.00	-1.00
	^	•	•	
	0.00	0.00	0.00	0.00
				-

VALUES AFTER 1 ITERATIONS

k=2

00	0	Gridworl	d Display	
	0.00	0.00 →	0.72 →	1.00
	^		^	
	0.00		0.00	-1.00
	^	^	^	
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 2 ITERATIONS

000	C C Gridworld Display				
0.00 >	0.52 →	0.78)	1.00		
•		• 0.43	-1.00		
•	•	•	0.00		
17AT III					

VALUES AFTER 3 ITERATIONS

000	Gridworld	d Display	
0.37 ▸	0.66)	0.83 →	1.00
•		• 0.51	-1.00
• 0.00	0.00 →	• 0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

000	Gridworl	d Display	
0.51 →	0.72 →	0.84)	1.00
^		^	
0.27		0.55	-1.00
		^	
0.00	0.22)	0.37	∢ 0.13
VALUES AFTER 5 TTERATIONS			

VALUES AFTER 5 ITERATIONS

000	Gridworld	d Display	
0.59 →	0.73 →	0.85)	1.00
• 0.41		• 0.57	-1.00
• 0.21	0.31 →	• 0.43	∢ 0.19

VALUES AFTER 6 ITERATIONS

000	Gridworl	d Display		
0.62)	0.74 →	0.85)	1.00	
• 0.50		• 0.57	-1.00	
▲ 0.34	0.36)	• 0.45	∢ 0.24	
VALU	VALUES AFTER 7 ITERATIONS			

00	Gridworl	d Display	
0.63)	0.74)	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39)	• 0.46	∢ 0.26
		9 TTEDA	

VALUES AFTER 8 ITERATIONS

000	Gridworl	d Display		
0.64 →	0.74 ▸	0.85)	1.00	
^		^		
0.55		0.57	-1.00	
•		•		
0.46	0.40 →	0.47	∢ 0.27	
VALUE	VALUES AFTER 9 ITERATIONS			

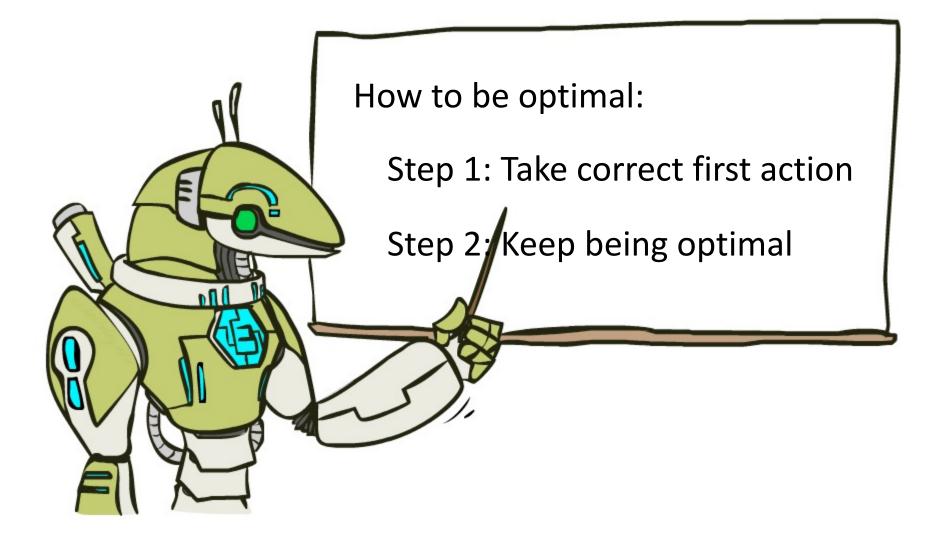
000	O O Gridworld Display				
0.64)	0.74 ▸	0.85)	1.00		
▲ 0.56		• 0.57	-1.00		
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27		
VALUES AFTER 10 ITERATIONS					

000		Gridworl	d Display		
(0.64 →	0.74 →	0.85)	1.00	
•	• 0.56		• 0.57	-1.00	
(• 0.48	∢ 0.42	• 0.47	∢ 0.27	
	VALUES AFTER 11 ITERATIONS				

00	Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	^		^		
	0.57		0.57	-1.00	
	^		^		
	0.49	◀ 0.42	0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0 0	Gridworl	d Display		
0.64 →	0.74 →	0.85)	1.00	
• 0.57		• 0.57	-1.00	
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
VALUES	VALUES AFTER 100 ITERATIONS			

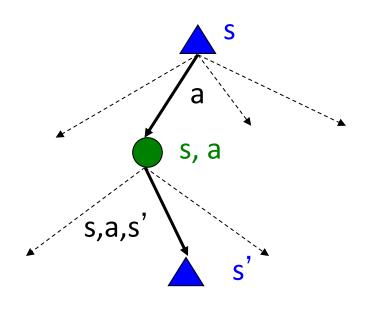
The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

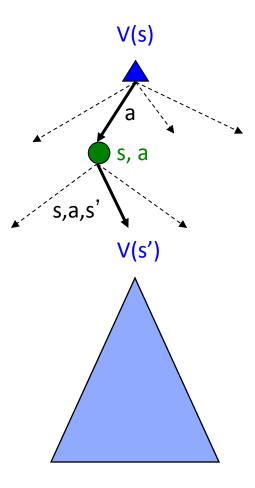
• Bellman equations characterize the optimal values:

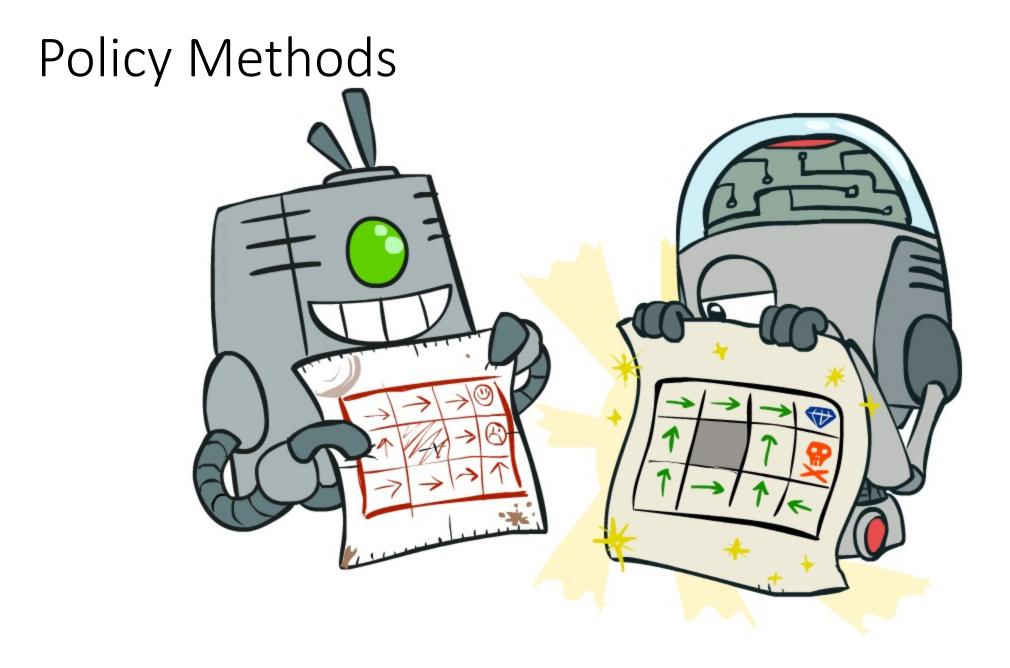
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

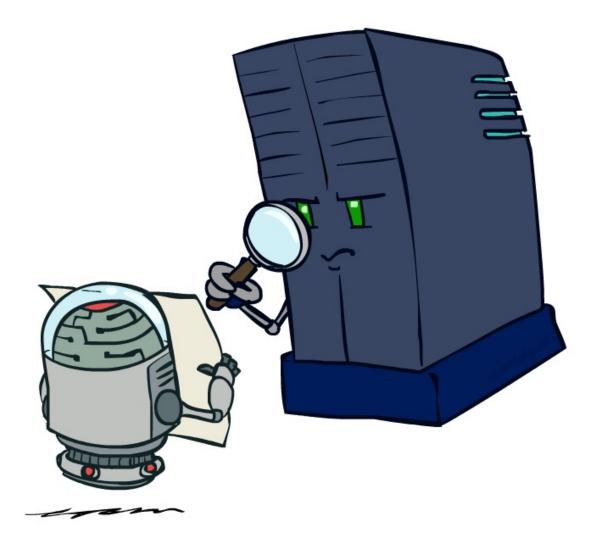
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values



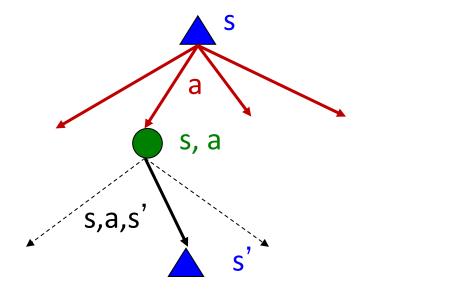


Policy Evaluation

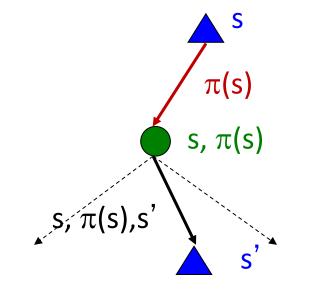


Fixed Policies

Do the optimal action



Do what π says to do

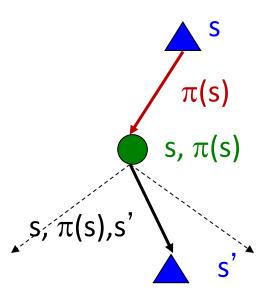


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

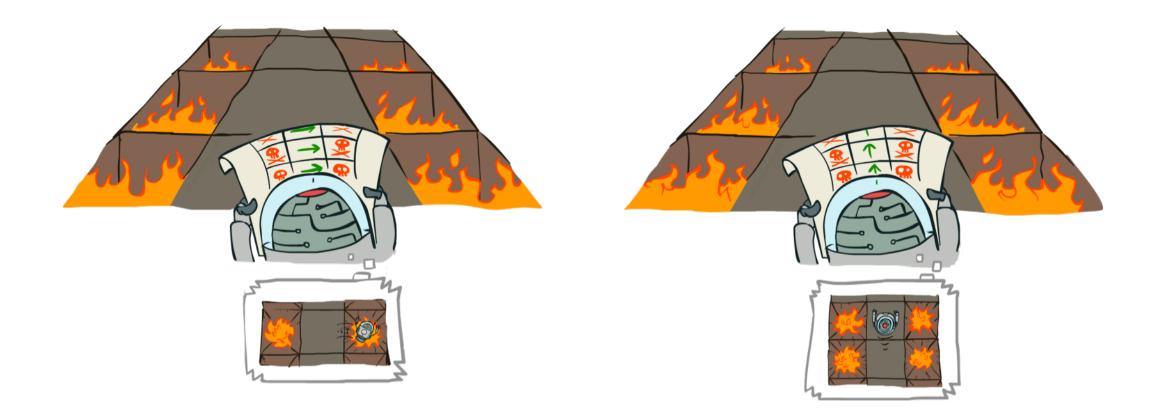
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	^ 70.20	-10.00
-10.00	4 8.74	-10.00
-10.00	▲ 33.30	-10.00

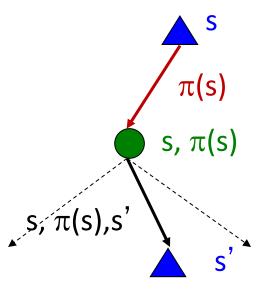
Policy Evaluation

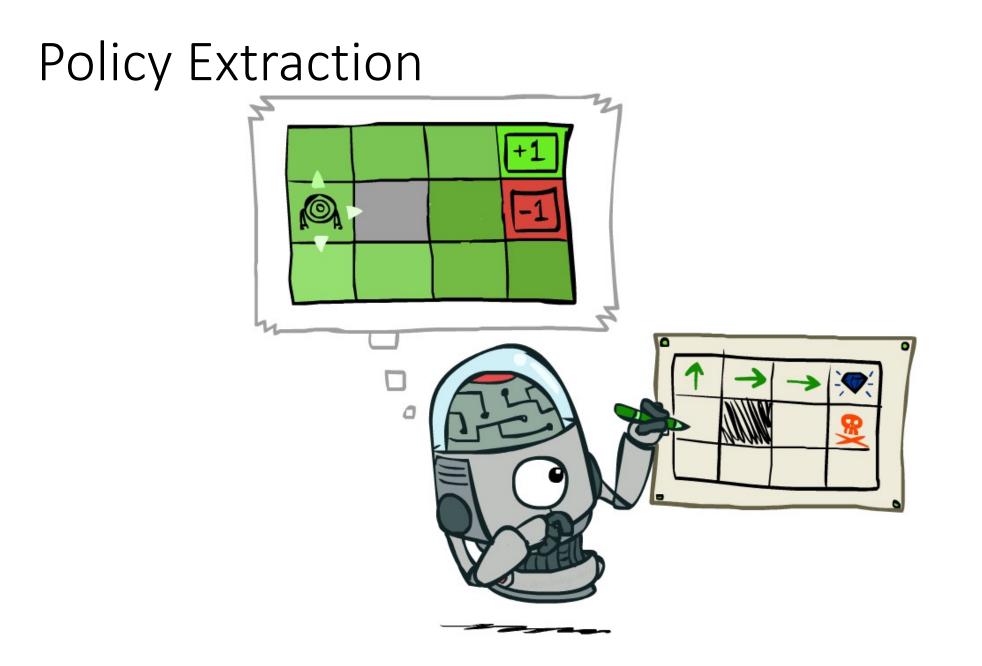
- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)





Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

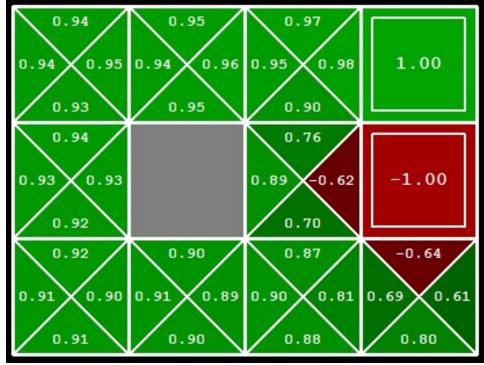
• This is called **policy extraction**, since it gets the policy implied by the values

0.95)	0.96 ኑ	0.98 ▶	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

Computing Actions from Q-Values

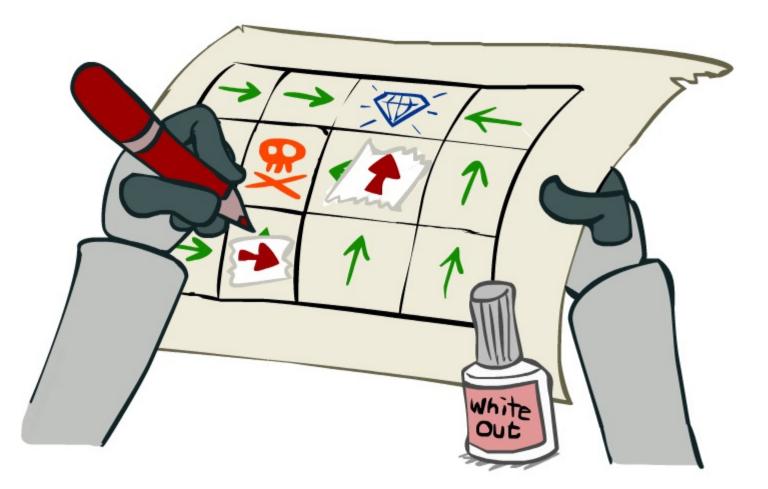
- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

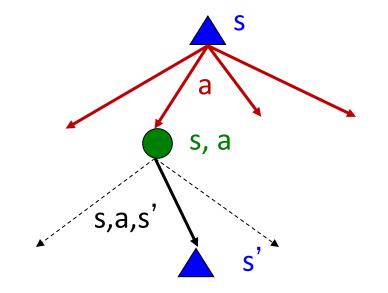


Problems with Value Iteration

• Value iteration repeats the Bellman updates:

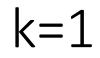
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Problem 1: It's slow O(S²A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



00	0	Gridworl	d Display	
	^	^	^	
	0.00	0.00	0.00	0.00
	^			
	0.00		0.00	0.00
	^	^	^	
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS



0 0	0	Gridwor	d Display	
	^	^		
	0.00	0.00	0.00 →	1.00
	•		∢ 0.00	-1.00
	^	•	^	
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 1 ITERATIONS

0 0	0	Gridworl	d Display	
	0.00	0.00 →	0.72 →	1.00
	^		^	
	0.00		0.00	-1.00
	^	^	^	
	0.00	0.00	0.00	0.00
				•

VALUES AFTER 2 ITERATIONS

000	Gridworl	d Display	
0.00 >	0.52 →	0.78)	1.00
•		• 0.43	-1.00
•	•	•	0.00
17AT III			

VALUES AFTER 3 ITERATIONS

000	Gridworld	d Display	
0.37 ▸	0.66)	0.83 →	1.00
•		• 0.51	-1.00
• 0.00	0.00 →	• 0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

000	Gridworl	d Display		
0.51 →	0.72 →	0.84)	1.00	
^		^		
0.27		0.55	-1.00	
		^		
0.00	0.22)	0.37	∢ 0.13	
VALUE	VALUES AFTER 5 TTERATIONS			

VALUES AFTER 5 ITERATIONS

000	Gridworld	d Display	
0.59 →	0.73 →	0.85)	1.00
• 0.41		• 0.57	-1.00
• 0.21	0.31 →	• 0.43	∢ 0.19

VALUES AFTER 6 ITERATIONS

000	Gridworl	d Display	
0.62)	0.74 →	0.85)	1.00
• 0.50		• 0.57	-1.00
▲ 0.34	0.36)	• 0.45	∢ 0.24
VALU	S AFTER	7 ITERA	TIONS

00	Gridworl	d Display	
0.63)	0.74)	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39)	• 0.46	∢ 0.26
		9 TTEDA	

VALUES AFTER 8 ITERATIONS

000	Gridworl	d Display		
0.64 →	0.74 ▸	0.85)	1.00	
^		^		
0.55		0.57	-1.00	
•		•		
0.46	0.40 →	0.47	∢ 0.27	
VALUE	VALUES AFTER 9 ITERATIONS			

000	O Gridworld Display			
0.64)	0.74 ▸	0.85)	1.00	
▲ 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
VALUES AFTER 10 ITERATIONS				

000		Gridworl	d Display		
	0.64 →	0.74 →	0.85)	1.00	
	▲ 0.56		• 0.57	-1.00	
	• 0.48	∢ 0.42	• 0.47	∢ 0.27	
	VALUES AFTER 11 ITERATIONS				

00	Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	^		^		
	0.57		0.57	-1.00	
	^		^		
	0.49	◀ 0.42	0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0 0	Gridworld Display				
0.64 →	0.74 →	0.85)	1.00		
• 0.57		• 0.57	-1.00		
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28		
VALUES	VALUES AFTER 100 ITERATIONS				

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

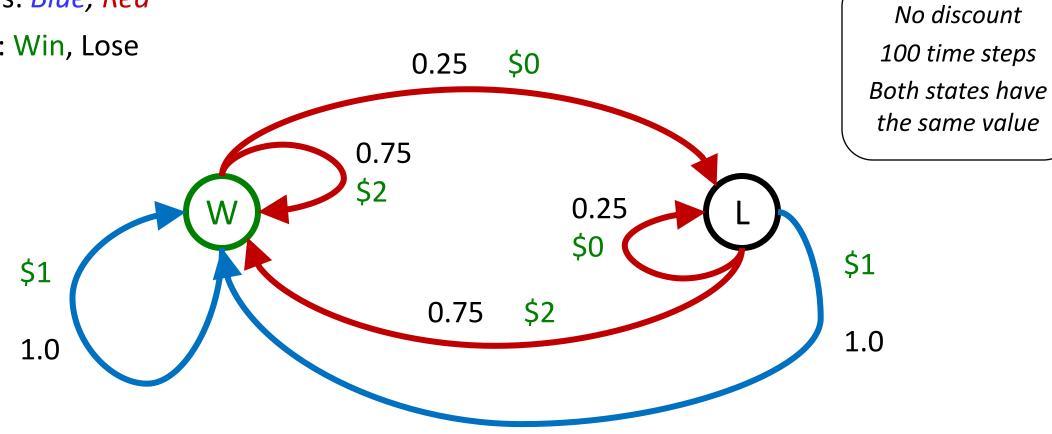
Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP

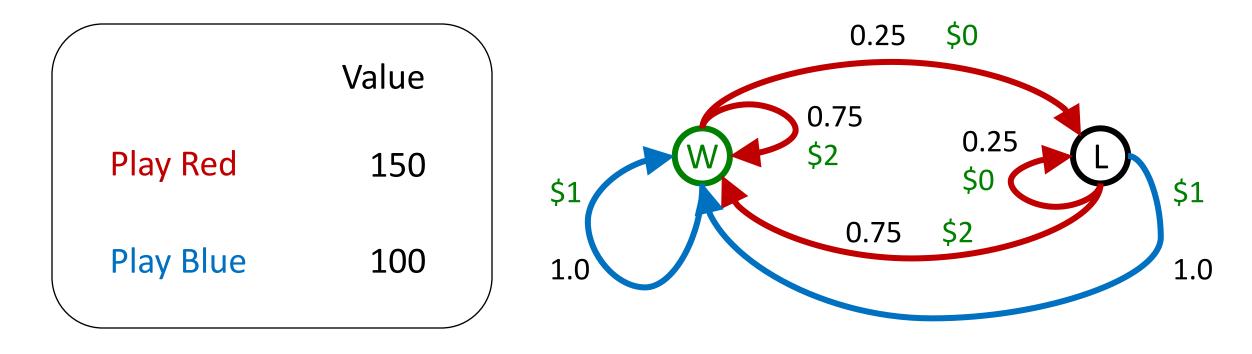
- Actions: *Blue, Red*
- States: Win, Lose

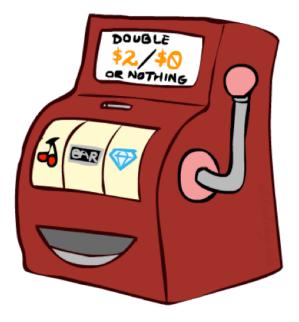


Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount 100 time steps Both states have the same value

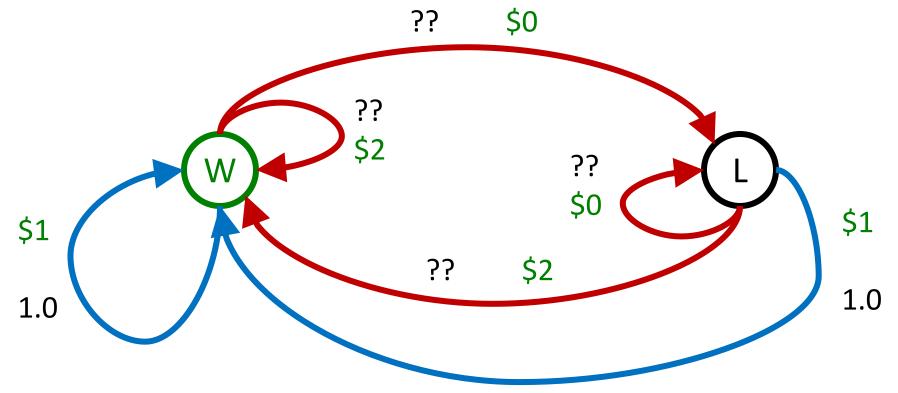


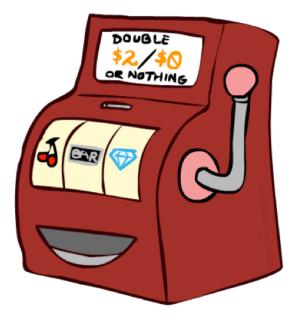


\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

• Rules changed! Red's win chance is different.

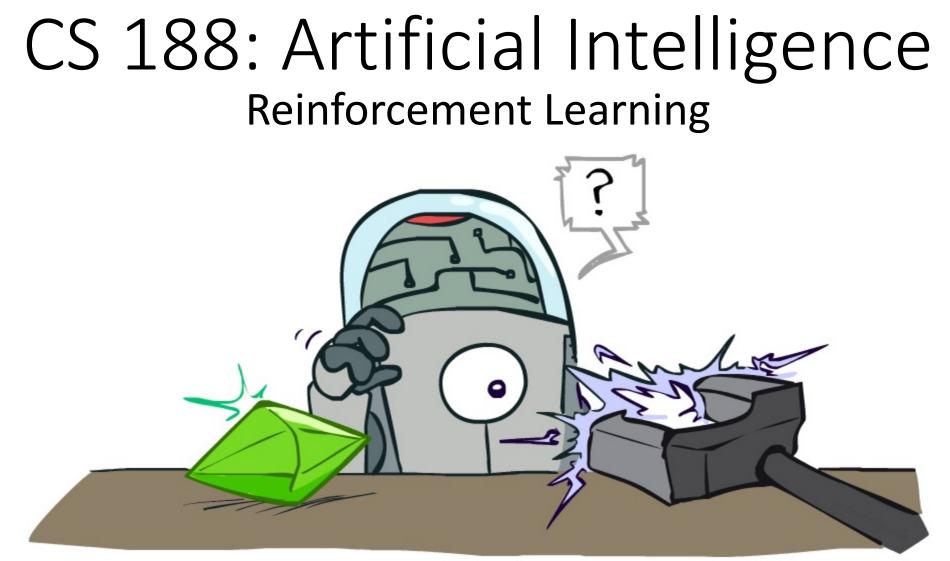




\$0\$0\$0\$2\$0\$0\$0\$0\$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

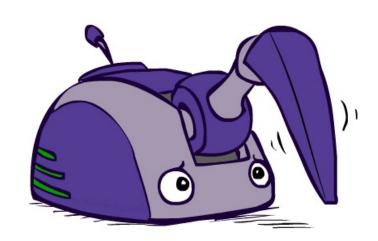


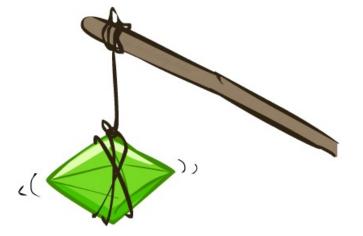
Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

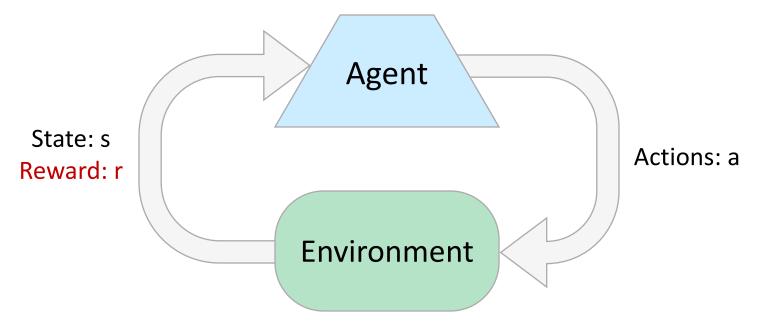
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning





Reinforcement Learning



- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

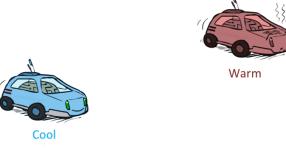
Finished

[Kohl and Stone, ICRA 2004]

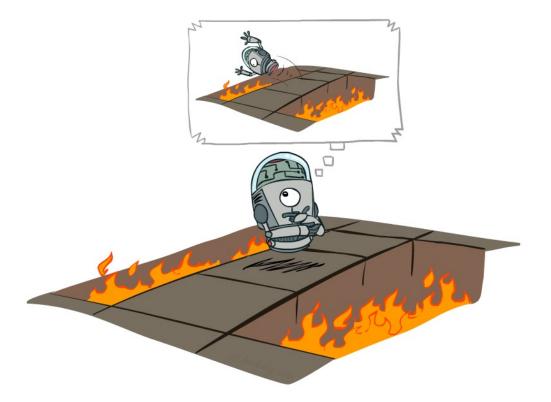
[Video: AIBO WALK – finished]

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn



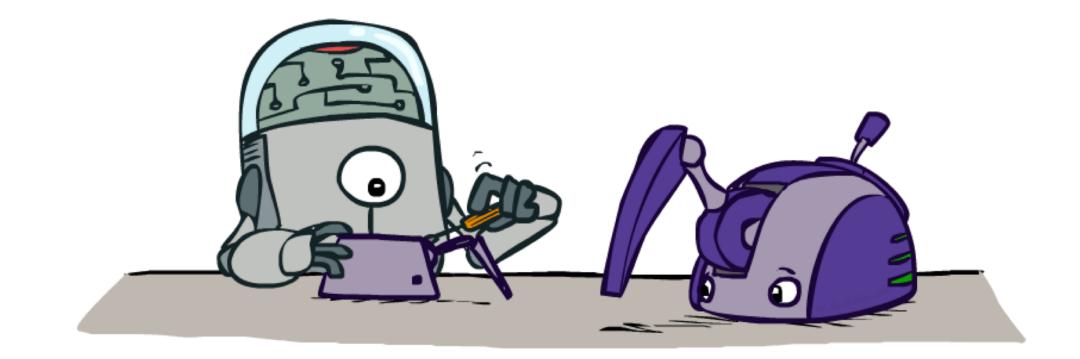
Offline (MDPs) vs. Online (RL)



Offline Solution

Online Learning

Model-Based Learning



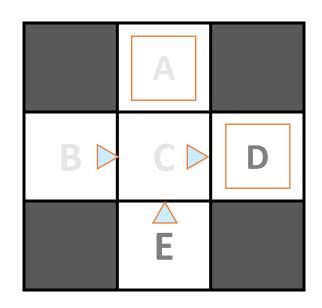
Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a $\widehat{T}(s, a, s')$
 - Normalize to give an estimate of
 - Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

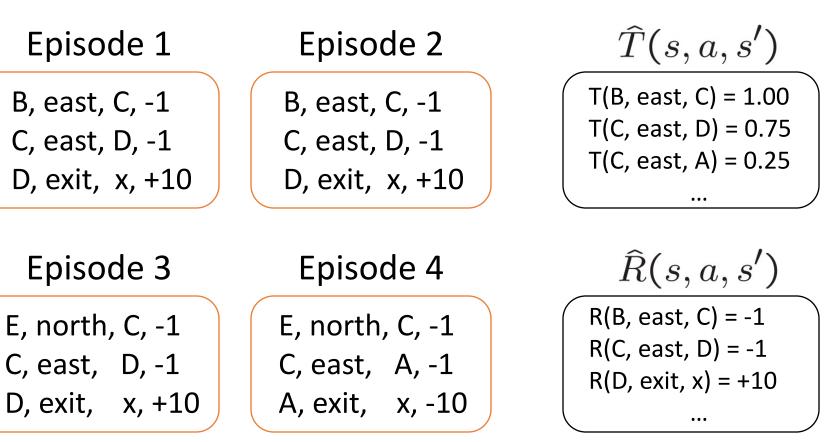
Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)



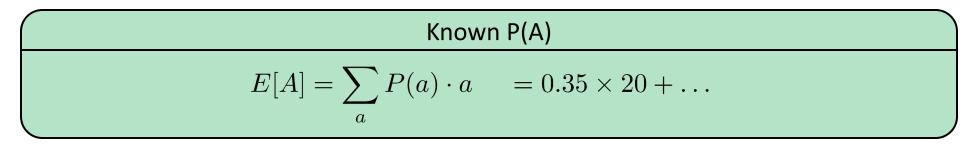
Assume: $\gamma = 1$



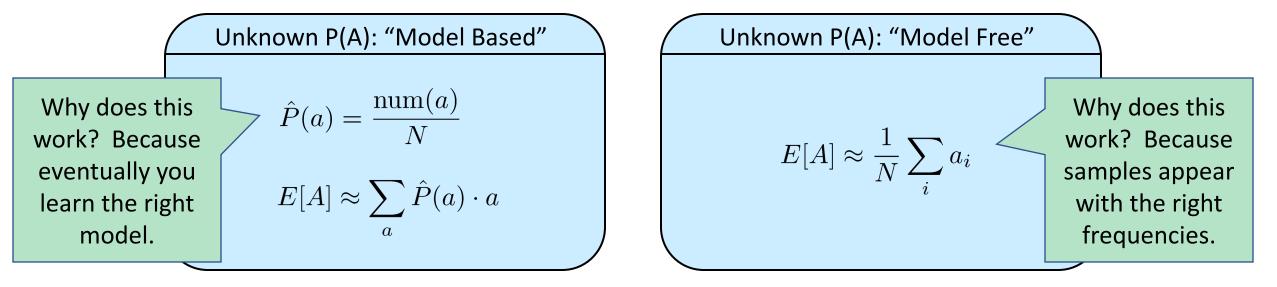
Learned Model

Example: Expected Age

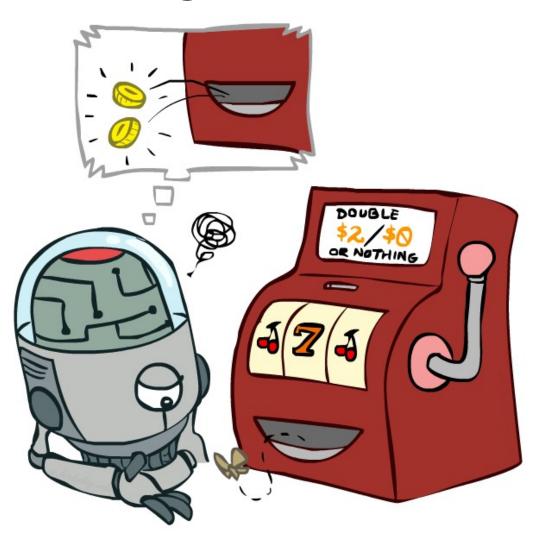
Goal: Compute expected age of cs188 students



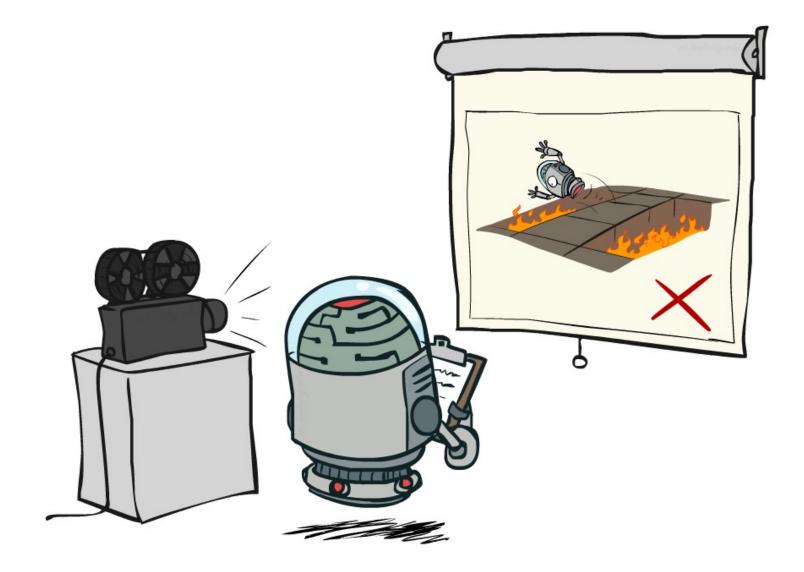
Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$



Model-Free Learning



Passive Reinforcement Learning



Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

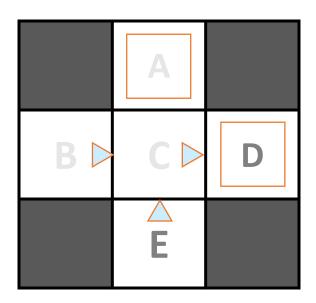
Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to $\boldsymbol{\pi}$
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

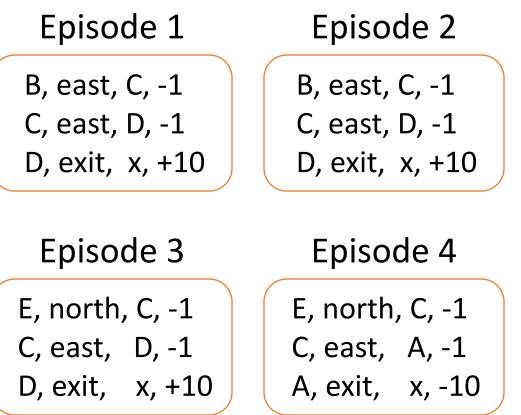
Example: Direct Evaluation

Input Policy π

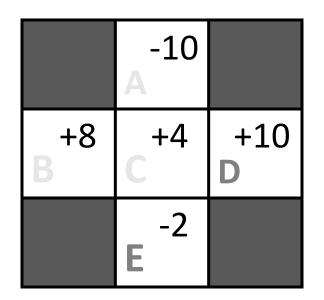
Observed Episodes (Training)



Assume: $\gamma = 1$



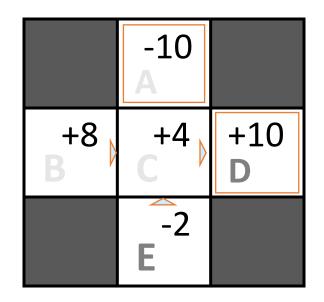
Output Values



Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values



If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

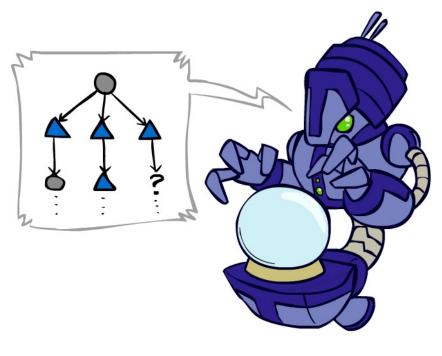
$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

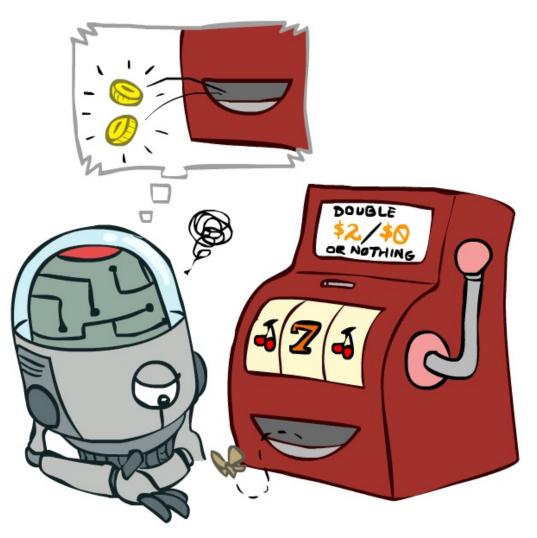
$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Temporal Difference Learning



Temporal Difference Learning

Let suppose:

• V(1,3) = 0.84 and V(2,3) = 0.92

Any time the transition ((1,3), π ((1,3)),(2,3)) occurs, we have

• V(1,3) = -0.04 + V(2,3) = 0.88

This entails that the current esteem is too small and it is better to increase it.

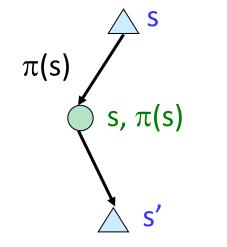
Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

 $\pi(s)$ s, $\pi(s)$ s'

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$



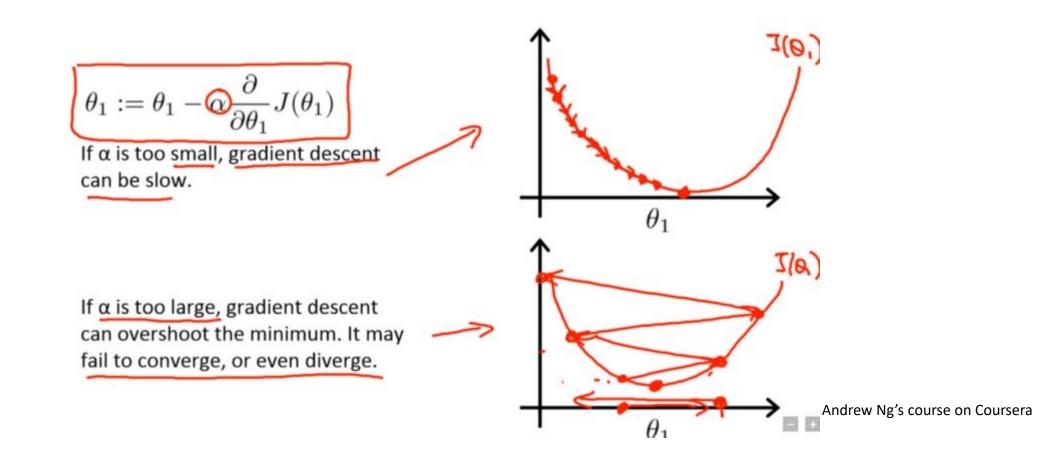
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

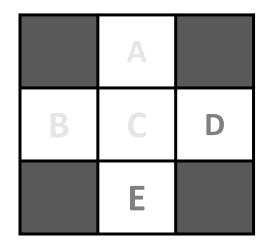
- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Similarly to the Gradient descent

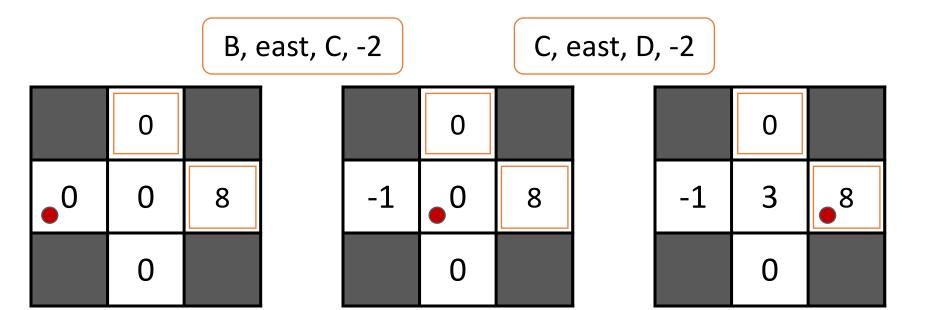


Example: Temporal Difference Learning

States



Assume: $\gamma = 1$, $\alpha = 1/2$



Observed Transitions

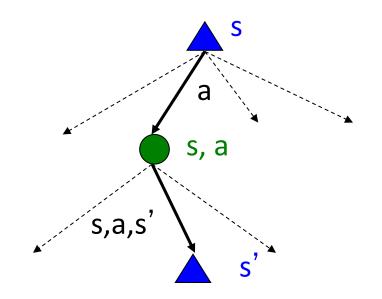
 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

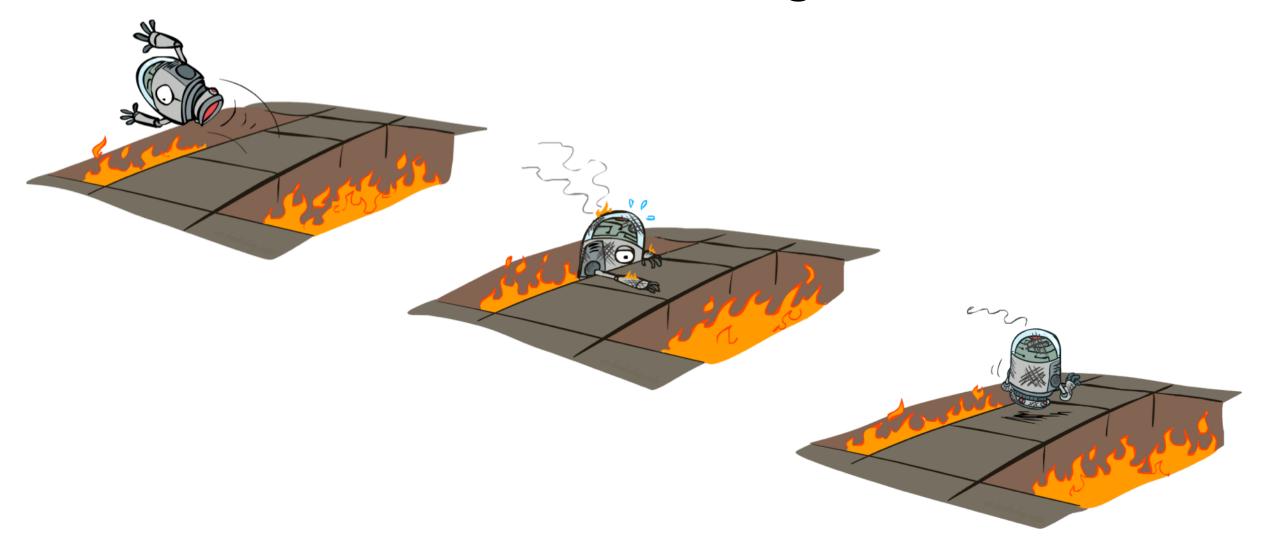
- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

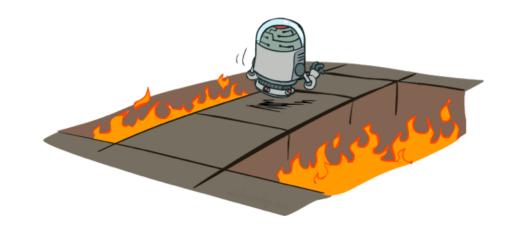


Active Reinforcement Learning



Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...



Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

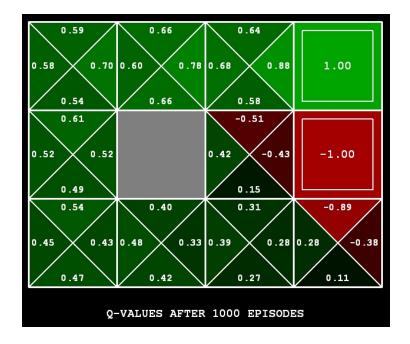
$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

• Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$



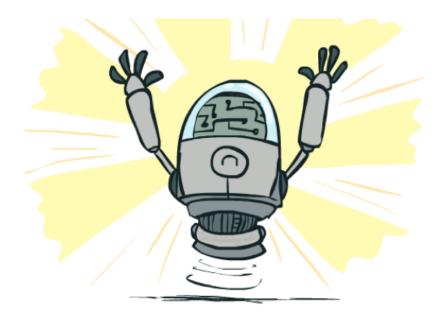
[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

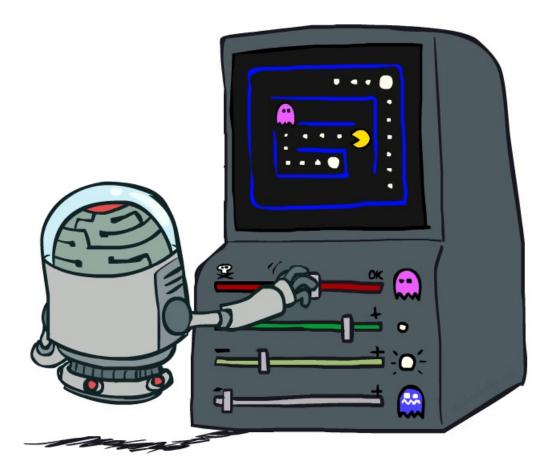
Video of Demo Q-Learning -- Crawler

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)



CS 188: Artificial Intelligence Reinforcement Learning II



Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL Known MDP: Offline Solution

Goal	Technique	
Compute V*, Q*, π*	Value / policy iteration	
Evaluate a fixed policy π	Policy evaluation	

Unknown MDP: Model-Based

Goal	Technique
Compute V*, Q*, π^*	VI/PI on approx. MDP
Evaluate a fixed policy π	PE on approx. MDP

Unknown MDP: Model-Free

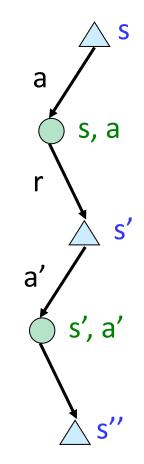
Goal	Technique	
Compute V*, Q*, π^*	Q-learning	
Evaluate a fixed policy π	Value Learning	

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- Update estimates each transition $\,\,(s,a,r,s')\,$
- Over time, updates will mimic Bellman updates



Q-Learning

• We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests

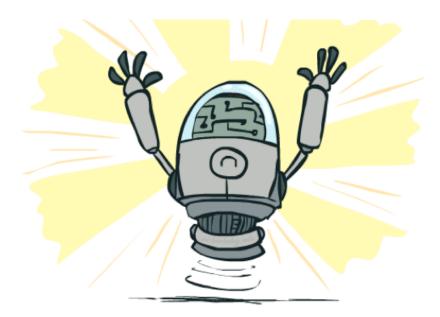
 $Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'}Q(s',a')\right]$$

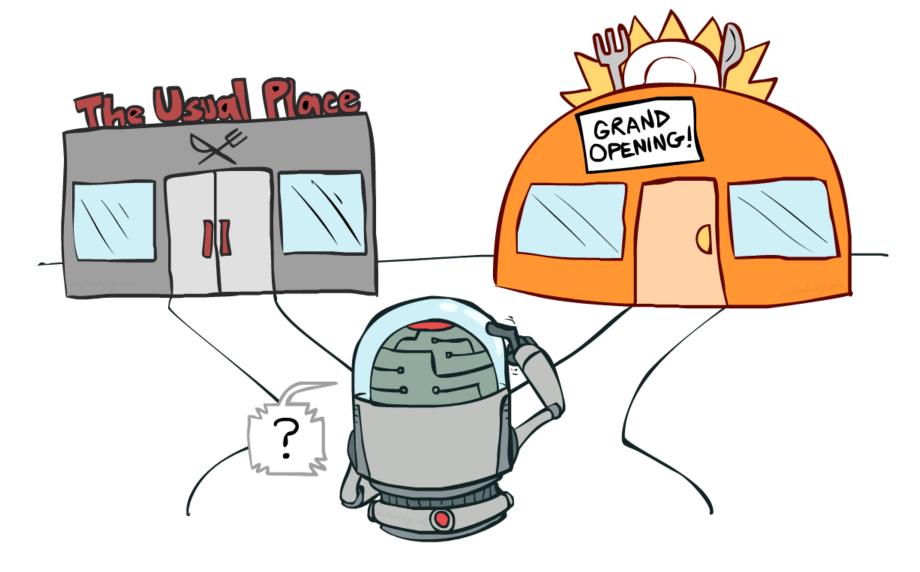
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)



Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation



How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ , act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower $\boldsymbol{\epsilon}$ over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/r$$

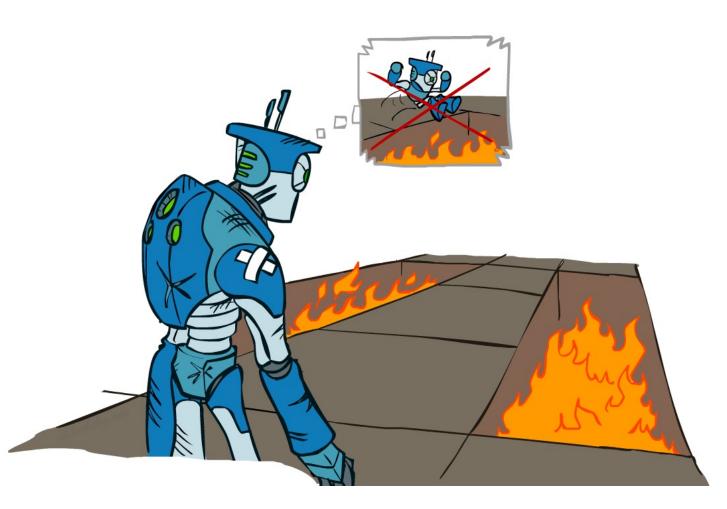
Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$ • Note: this propagates the "bonus" back to states that lead to unknown states as well! Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{s} f(Q(s',a'), N(s',a'))$

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

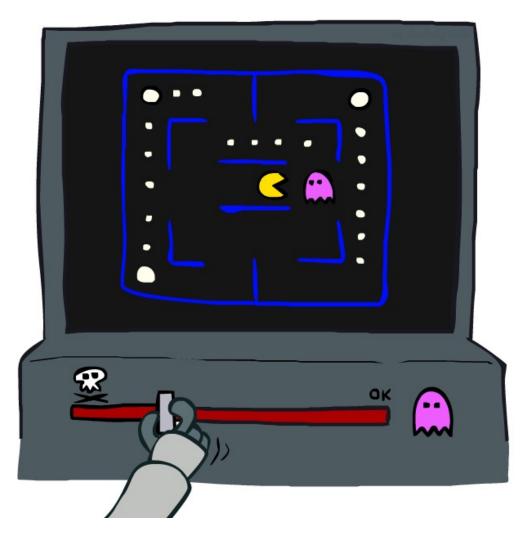
Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

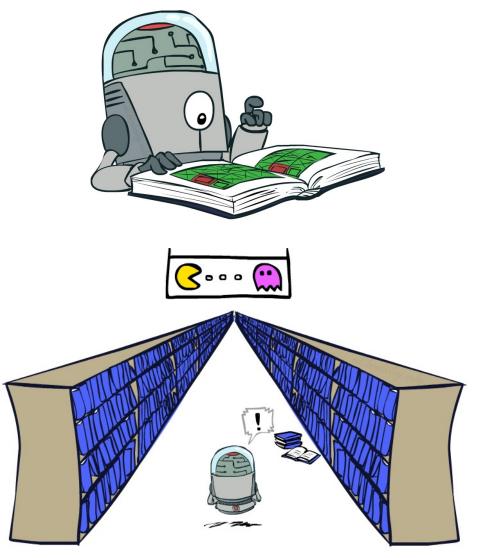


Approximate Q-Learning



Generalizing Across States

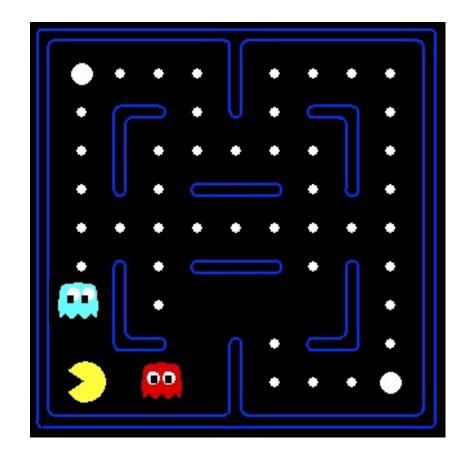
- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again



[demo – RL pacman]

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

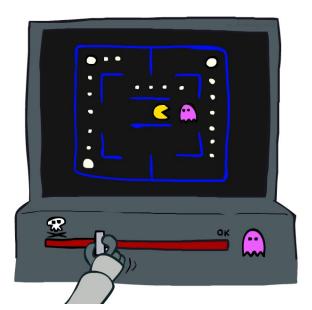
$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

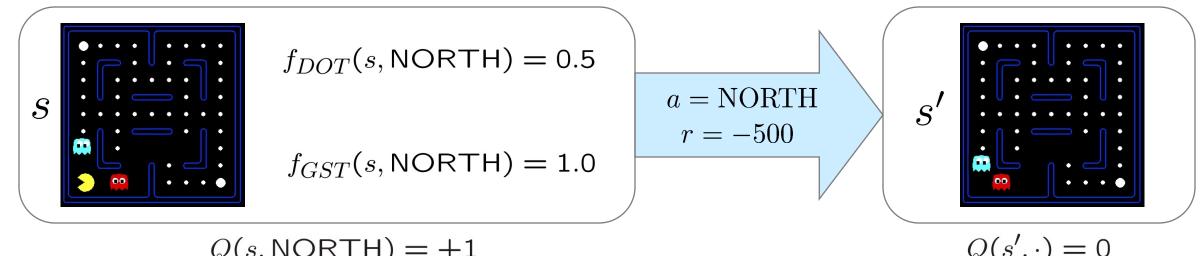
$$\begin{aligned} \text{transition} &= (s, a, r, s') \\ \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ Q(s, a) &\leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \qquad \text{Exact Q's} \\ w_i &\leftarrow w_i + \alpha \text{ [difference] } f_i(s, a) \end{aligned}$$

proximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



Example: Q-Pacman $Q(s,a) = 4.0f_{DOT}(s,a) - 1.0f_{GST}(s,a)$



$$Q(s, \text{NORTH}) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$
 $Q(s', \cdot) = -500 + 0$

difference = -501
$$w_{BOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

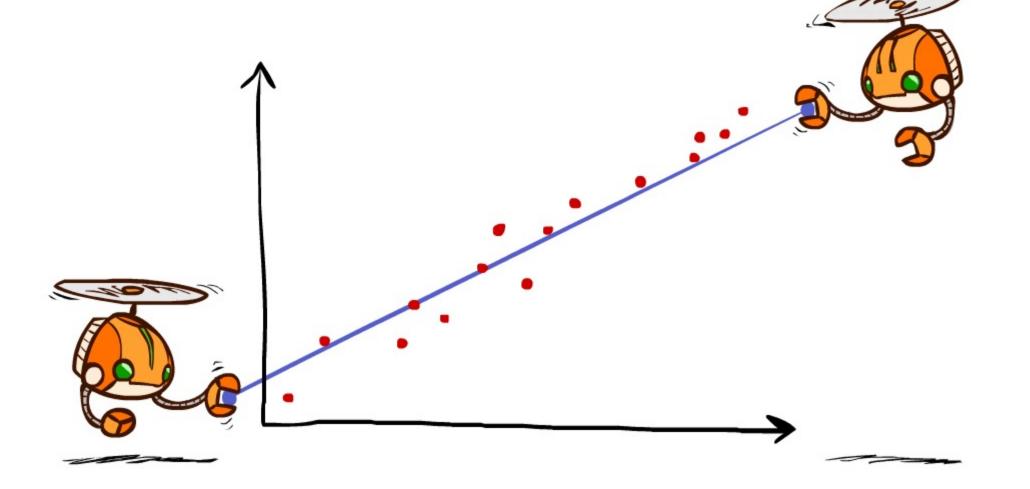
 $w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

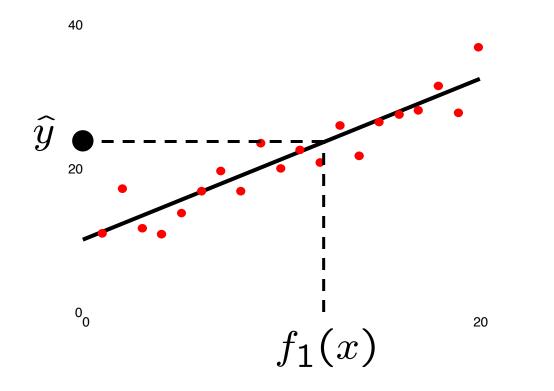
[Demo: approximate Qlearning pacman (L11D10)]

Video of Demo Approximate Q-Learning --Pacman

Q-Learning and Least Squares

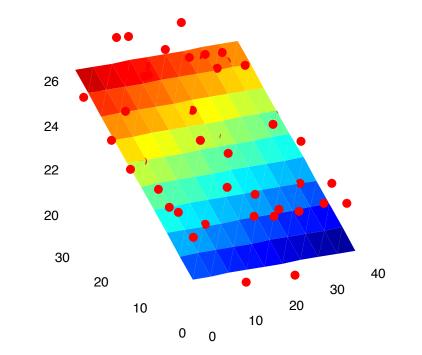


Linear Approximation: Regression*



Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

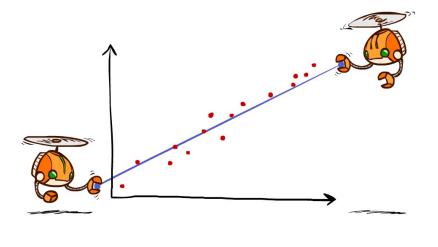


Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$ Optimization: Least Squares* total error = $\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_k w_k f_k(x_i) \right)^2$ Error or "residual" Observation yPrediction \widehat{y} 0 0 20 $f_1(x)$

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$
$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$
$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

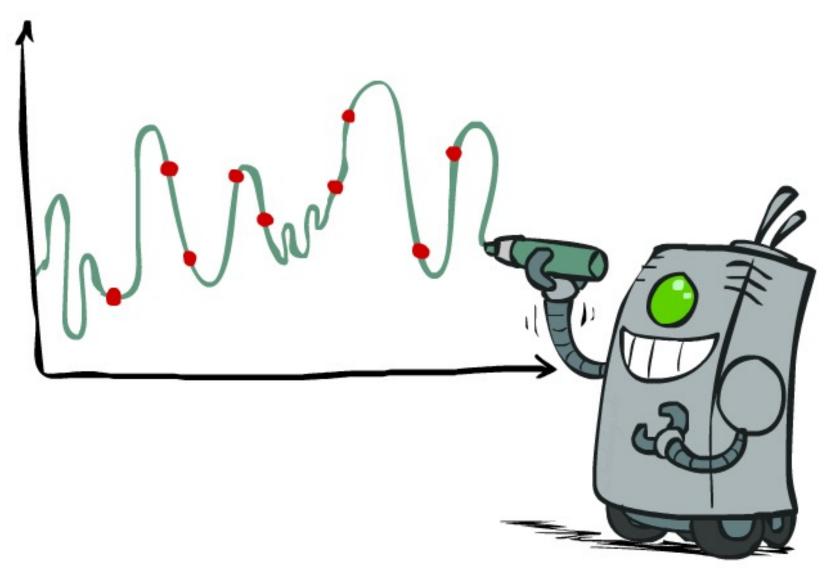


Approximate q update explained:

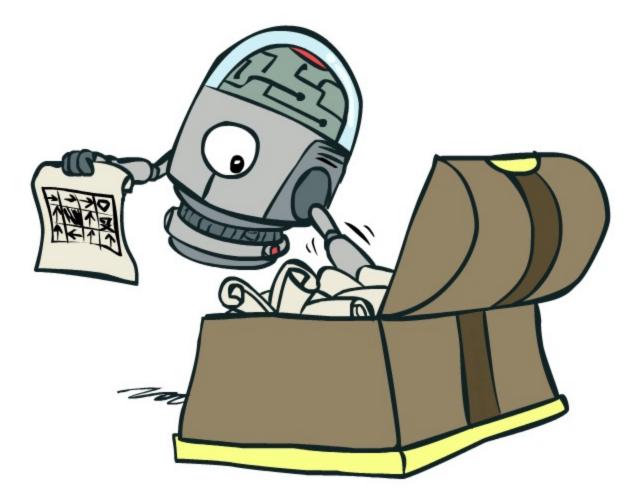
$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*



Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!

