
CS 188: Artificial Intelligence
Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World
§ A maze-like problem

§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes
• An MDP is defined by:

• A set of states s Î S
• A set of actions a Î A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?
• “Markov” generally means that given the present state, the future

and the past are independent

• For Markov decision processes, “Markov” means action outcomes
depend only on the current state

• This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

• In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• An optimal policy is one that maximizes expected

utility if followed
• An explicit policy defines a reflex agent

• Expectimax didn’t compute entire policies
• It computed the action for a single state only

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

Example: Racing
• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

MDP Search Trees
• Each MDP state projects an expectimax-like search tree

a

s

sʼ

s, a

(s,a,sʼ) called a transition

T(s,a,sʼ) = P(sʼ|s,a)

R(s,a,sʼ)
s,a,sʼ

s is a state

(s, a) is a q-
state

Infinite Utilities?!
§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Stationary Preferences
• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:

Utilities of Sequences

Utilities of Sequences

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2][2, 3, 4] or

[0, 0, 1][1, 0, 0] or

Discounting
• It’s reasonable to maximize the sum of rewards
• It’s also reasonable to prefer rewards now to rewards later
• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting
• How to discount?

• Each time we descend a level, we
multiply in the discount once

• Why discount?
• Sooner rewards probably do have

higher utility than later rewards
• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
• U([1,2,3]) < U([3,2,1])

Recap: Defining MDPs
• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,sʼ
sʼ

Solving MDPs

Optimal Quantities
§ The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo – gridworld values (L8D4)]

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 1
Living reward = 0

Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action
• Average sum of (discounted) rewards
• This is just what expectimax computed!

• Recursive definition of value:

a

s

s, a

s,a,sʼ
sʼ

Racing Search Tree

Racing Search Tree

Racing Search Tree
• We’re doing way too much work

with expectimax!

• Problem: States are repeated
• Idea: Only compute needed

quantities once

• Problem: Tree goes on forever
• Idea: Do a depth-limited

computation, but with increasing
depths until change is small

• Note: deep parts of the tree
eventually don’t matter if γ < 1

Value Iteration

Value Iteration
• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,sʼ
Vk(s’)

Example: Value Iteration

0 0 0

Assume no discount!

Example: Value Iteration

0 0 0

2 1 0

Assume no discount!

V_1() = max((1*1+0), (0.5 *2 + 0 + 0.5*2 + 0)) = 2

V_1() = max((0.5 * 1 + 0 + 0.5 * 1 +0), (1* -10)) = 1

V_1() = max (0) = 0

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

V_1() = max((1*(1+2)), (0.5 *(2 + 2) + 0.5*(2 + 1))) = 3.5

V_1() = max((0.5 *(1 + 2) + 0.5 *(1 +1)), (1* -10)) = 2.5

V_1() = max (0) = 0

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations
• Definition of “optimal utility” via expectimax recurrence

gives a simple one-step lookahead relationship amongst
optimal utility values

• These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

a

s

s, a

s,a,sʼ
sʼ

Value Iteration
• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,sʼ
V(s’)

Policy Methods

Policy Evaluation

Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy p(s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,sʼ
sʼ

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Do the optimal action Do what p says to do

Utilities for a Fixed Policy
• Another basic operation: compute the utility of a state s under

a fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

• Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation
• How do we calculate the V’s for a fixed policy p?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Policy Extraction

Computing Actions from Values

• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

• Let’s imagine we have the optimal q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,sʼ
sʼ

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
• Step 2: Policy improvement: update policy using one-step look-ahead with

resulting converged (but not optimal!) utilities as future values
• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions

Policy Iteration

• Evaluation: For fixed current policy p, find values with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:

Comparison
• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

• So you want to….
• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions

Double Bandits

Double-Bandit MDP
• Actions: Blue, Red
• States: Win, Lose

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount
100 time steps

Both states have
the same value

Offline Planning
• Solving MDPs is offline planning
• You determine all quantities through computation
• You need to know the details of the MDP
• You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Online Planning

• Rules changed! Red’s win chance is different.

W L
$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

What Just Happened?
• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP

CS 188: Artificial Intelligence
Reinforcement Learning

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Reinforcement Learning
• Still assume a Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

Example: Model-Based Learning
Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Expected Age
Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning
• Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world.

Direct Evaluation
• Goal: Compute values for each state under p

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the

sum of discounted rewards turned out to be
• Average those samples

• This is called direct evaluation

Example: Direct Evaluation
Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation
• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values,

using just sample transitions

• What bad about it?
• It wastes information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?
• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ

Sample-Based Policy Evaluation?
• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

Temporal Difference Learning
Let suppose:

• V(1,3) = 0.84 and V(2,3) = 0.92

Any time the transition ((1,3), p((1,3)),(2,3)) occurs, we have
• V(1,3) = -0.04 + V(2,3) = 0.88

This entails that the current esteem is too small and it is better to
increase it.

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Temporal Difference Learning
• Big idea: learn from every experience!

• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average
• Exponential moving average
• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages

Similarly to the Gradient descent

Andrew Ng’s course on Coursera

Example: Temporal Difference Learning

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning
• TD value leaning is a model-free way to do policy evaluation, mimicking

Bellman updates with running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,sʼ
sʼ

Active Reinforcement Learning

Active Reinforcement Learning
• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning! You actually take actions in the world and find

out what happens…

Detour: Q-Value Iteration
• Value iteration: find successive (depth-limited) values

• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning
• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning Properties
• Amazing result: Q-learning converges to optimal policy -- even

if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

CS 188: Artificial Intelligence
Reinforcement Learning II

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

• We still assume an MDP:
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R, so must try out actions

• Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL
Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Model-Free Learning
• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Q-Learning
• We’d like to do Q-value updates to each Q-state:

• But can’t compute this update without knowing T, R

• Instead, compute average as we go
• Receive a sample transition (s,a,r,s’)
• This sample suggests

• But we want to average over results from (s,a) (Why?)
• So keep a running average

Q-Learning Properties
• Amazing result: Q-learning converges to optimal policy -- even

if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Exploration vs. Exploitation

How to Explore?
• Several schemes for forcing exploration
• Simplest: random actions (e-greedy)

• Every time step, flip a coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around

once learning is done
• One solution: lower e over time
• Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration –
Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions
• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

• Note: this propagates the “bonus” back to states that lead to unknown states as well!
Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function –
Crawler

Regret
• Even if you learn the optimal policy, you

still make mistakes along the way!
• Regret is a measure of your total

mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

• Minimizing regret goes beyond learning
to be optimal – it requires optimally
learning to be optimal

• Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States
• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about
every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

Feature-Based Representations
• Solution: describe a state using a vector of features

(properties)
• Features are functions from states to real numbers (often

0/1) that capture important properties of the state
• Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions
• Using a feature representation, we can write a q function (or value function) for any

state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning --
Pacman

Q-Learning and Least Squares

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

• Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
• E.g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions
• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

Conclusion
• We’re done with Part I: Search and Planning!

• We’ve seen how AI methods can solve
problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

• Next up: Part II: Uncertainty and Learning!

