
Beyond Q-Learning

Reinforcement Learning Beyond Q-Learning 1

Roberto Capobianco

Reinforcement Learning

RL Recap

Reinforcement Learning Beyond Q-Learning 2

Differently from dynamic programming (and more generally planning) we do
not assume complete knowledge of the environment.

RL methods require only experience
• Model (world) generates only transitions
• Probability distribution of transitions is unknown
• Reward function is unknown

Value of a state is the expected cumulated return from that state

Notation & Assumptions

Reinforcement Learning Beyond Q-Learning 3

Previous part of the course: state is x

Now: state is s

Transition probability: P(s’|s,a)

Assumptions:
• Experience is divided into episodes
• All episodes eventually terminate
• Only on completion of episode values are estimated and policies changed

Action Values

Reinforcement Learning Beyond Q-Learning 4

• If model not available, action values q are very useful
• More than state values, that do not determine a policy
• State values need a lookahead step to see which action is best
• Without model, state values are not sufficient

• Policy evaluation if model unknown consists in estimating 𝑞𝜋(𝑠, 𝑎)
• Expected return starting in s, taking action a and then following 𝜋
• Essentially the same as estimating state values

Overall Schema

Reinforcement Learning Beyond Q-Learning 5

• Similar to dynamic programming (policy iteration)
• Maintain approximate policy and approximate value for policy
• Value is repeatedly altered to better approximate value of 𝜋
• Policy is repeatedly improved with respect to current value
• Creates moving target for each other, while approaching optimality

RL Policy Iteration

Reinforcement Learning Beyond Q-Learning 6

• Alternate complete steps of policy evaluation (E) and improvement (I)
• Begin with arbitrary policy 𝜋0
• End with optimal policy and action-value function

• Evaluation is done with value estimate
• Many episodes experienced
• Approximate action-value function approaches true one
• Assume we observe infinite episodes: 𝑞𝜋𝑘 is exact for an arbitrary policy 𝜋𝑘

• Policy evaluation is DIFFICULT

RL Policy Improvement

Reinforcement Learning Beyond Q-Learning 7

• Policy improvement: make policy greedy wrt current value function
• No model is needed, because we have action value function
• 𝜋 𝑠 = argmax𝑎𝑞(𝑠, 𝑎)
• Policy improvement is done by setting 𝜋𝑘+1 as greedy policy wrt 𝑞𝜋𝑘

• Policy improvement theorem applies to 𝜋𝑘 and 𝜋𝑘+1, since

𝑞𝜋𝑘 s, 𝜋𝑘+1 𝑠 = 𝑞𝜋𝑘 𝑠, argmax𝑎𝑞𝜋𝑘 𝑠, 𝑎 = max
𝑎

𝑞𝜋𝑘(𝑠, 𝑎) ≥ 𝑞𝜋𝑘 𝑠, 𝜋𝑘 𝑠 ≥ 𝑣𝜋𝑘(𝑠)

RL Policy Improvement

Reinforcement Learning Beyond Q-Learning 8

• Policy improvement: make policy greedy wrt current value function
• No model is needed, because we have action value function
• 𝜋 𝑠 = argmax𝑎𝑞(𝑠, 𝑎)
• Policy improvement is done by setting 𝜋𝑘+1 as greedy policy wrt 𝑞𝜋𝑘

• Policy improvement theorem applies to 𝜋𝑘 and 𝜋𝑘+1, since

𝑞𝜋𝑘 s, 𝜋𝑘+1 𝑠 = 𝑞𝜋𝑘 𝑠, argmax𝑎𝑞𝜋𝑘 𝑠, 𝑎 = max
𝑎

𝑞𝜋𝑘(𝑠, 𝑎) ≥ 𝑞𝜋𝑘 𝑠, 𝜋𝑘 𝑠 ≥ 𝑣𝜋𝑘(𝑠)

This is the easy part

SARSA and Q-Learning

Reinforcement Learning Beyond Q-Learning 9

SARSA Q-Learning

Data Collection

Reinforcement Learning Beyond Q-Learning 10

• Affects the policy evaluation step

• On-policy (e.g. SARSA) learns qs for a near-optimal policy that explores
• Try to learn action values conditional on subsequent optimal behavior
• Need to behave non-optimally to explore all actions
• Behavior and learning policy are the same

• Off-policy (e.g., Q-Learning):
• Use two policies:

• One to be learned (target policy)
• One to generate behavior (behavior policy)

Data Collection

Reinforcement Learning Beyond Q-Learning 11

• On-policy (e.g. SARSA) learns qs for a near-optimal policy that explores
• Try to learn action values conditional on subsequent optimal behavior
• Need to behave non-optimally to explore all actions
• Behavior and learning policy are the same

• Off-policy (e.g., Q-Learning):
• Use two policies:

• One to be learned (target policy)
• One to generate behavior (behavior policy)

WHY IS Q-LEARNING OFF-POLICY?

𝝐-greedy

Reinforcement Learning Beyond Q-Learning 12

• Policy is generally soft
• 𝜋 𝑎 𝑠 > 0, ∀ 𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴(𝑠)
• Gradually shifted closer and closer to deterministic optimal policy

• We consider 𝜖-greedy policies

• All nongreedy actions are given the minimal probability of selection
𝜖

|𝐴 𝑠 |

• Greedy action has probability 1 − 𝜖 +
𝜖

|𝐴 𝑠 |

• 𝜖-soft policy: 𝜋 𝑎 𝑠 ≥
𝜖

|𝐴 𝑠 |
for all states, actions and for some 𝜖 > 0

• Closest to greedy among 𝜖-soft policies
• Why do we need this?

𝝐-greedy

Reinforcement Learning Beyond Q-Learning 13

• Policy is generally soft
• 𝜋 𝑎 𝑠 > 0, ∀ 𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴(𝑠)
• Gradually shifted closer and closer to deterministic optimal policy

• We consider 𝜖-greedy policies

• All nongreedy actions are given the minimal probability of selection
𝜖

|𝐴 𝑠 |

• Greedy action has probability 1 − 𝜖 +
𝜖

|𝐴 𝑠 |

• 𝜖-soft policy: 𝜋 𝑎 𝑠 ≥
𝜖

|𝐴 𝑠 |
for all states, actions and for some 𝜖 > 0

• Closest to greedy among 𝜖-soft policies
• Why do we need this? We need to estimate value of all actions, not just

favored ones: EXPLORATION

Explore VS Exploit

Reinforcement Learning Beyond Q-Learning 14

RL Target

Reinforcement Learning Beyond Q-Learning 15

• Central idea: update a(n) (action-)value function
• All approaches use this general update step

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼[𝑇𝑡 − 𝑉 𝑠𝑡]
• 𝑇𝑡: target computed at time t
• 𝛼: constant or adaptive step-size
• Update is done every time non-terminal state is visited

• Target can be computed via
• (n-step) Bootstrapping or TD error (sampled or expected)
• Monte-Carlo sampling

Temporal Difference

Reinforcement Learning Beyond Q-Learning 16

• Estimates based on other learned estimates without waiting final outcome
• Bootstrapping

• Q-Learning and SARSA are 1-step TD (lookahead of 1 step)
Note also that Q-learning is exactly the same as dynamic programming in deterministic MDPs

• TD error measures difference between:
• Estimated value of 𝑠𝑡
• Better estimate Tt+1 = 𝑅𝑡+1 + 𝛾𝑉 𝑠𝑡+1

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉(𝑠𝑡)
• TD error at each time is the error in estimate made at that time

• Depends on next state and reward, so not available until t+1

Expected VS Sampled

Reinforcement Learning Beyond Q-Learning 17

Expected TD

Reinforcement Learning Beyond Q-Learning 18

• Like Q-learning, except that instead of max uses expected value
• Takes into account how likely each action is under current policy

𝑄 𝑠𝑡 , 𝑎𝑡 ← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝐸𝜋 𝑄 𝑠𝑡+1, 𝑎𝑡+1 𝑠𝑡+1 − 𝑄 𝑠𝑡 , 𝑎𝑡

← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑅𝑡+1 + 𝛾෍

𝑎

𝜋 𝑎 𝑠𝑡+1 𝑄 𝑠𝑡+1, 𝑎 − 𝑄 𝑠𝑡 , 𝑎𝑡]

• Moves deterministically in the same direction as Sarsa moves in expectation
• More complex than Sarsa
• Removes variance from Sarsa due to random selection of 𝑎𝑡+1

• Can be on-policy or off-policy (named Expected Sarsa)

Monte Carlo Methods

Reinforcement Learning Beyond Q-Learning 19

Monte Carlo methods:
• Sample and average complete returns for each state-action pair
• Idea from the definition of value function (expected return)
• Target 𝐺𝑡: return after time t (needs the episode to finish)

Why Monte Carlo?
Estimation involves significant random component (here, complete return)

Can be on-policy or off-policy

On-policy MC Control

Reinforcement Learning Beyond Q-Learning 20

Off-Policy Evaluation

Reinforcement Learning Beyond Q-Learning 21

• Happens at policy evaluation: both target and behavior policies are fixed
• Try to estimate 𝑣𝜋 or 𝑞𝜋 for target policy 𝜋
• All we have are episodes following another policy 𝑏

• To use episodes from b, require that
• Every action taken under 𝜋 is also taken under b
• 𝜋 𝑎 𝑠 > 0 → 𝑏 𝑎 𝑠 > 0 (coverage assumption)
• b must be stochastic in states where it is not identical to 𝜋
• Target policy is typically deterministic greedy wrt current estimate
• Behavior policy remains stochastic (e.g., 𝜖-greedy)

Importance Sampling

Reinforcement Learning Beyond Q-Learning 22

• Importance sampling:
• Estimates expected values under a distribution given samples from another
• Applied to off-policy learning by weighting returns

• Weight: relative probability of trajectories occurring under both policies
• Known as importance-sampling ratio

• Relative probability (importance-sampling ratio) is

𝜌𝑡:𝑇−1 =
ς𝑘=𝑡
𝑇−1𝜋 𝑎𝑘 𝑠𝑘 𝑝(𝑠𝑘+1|𝑠𝑘 , 𝑎𝑘)

ς𝑘=𝑡
𝑇−1 𝑏 𝑎𝑘 𝑠𝑘 𝑝(𝑠𝑘+1|𝑠𝑘 , 𝑎𝑘)

=ෑ

𝑘=𝑡

𝑇−1
𝜋(𝑎𝑘|𝑠𝑘)

𝑏(𝑎𝑘|𝑠𝑘)

• We want to estimate expected returns of 𝜋, with returns 𝐺𝑡 from 𝑏
• Ratio transforms them:

E 𝜌𝑡:𝑇−1𝐺𝑡 𝑠𝑡 = 𝑣𝜋 𝑠 =
σ𝑡∈𝑇 𝑠 𝜌𝑡:Termination 𝑡 −1𝐺𝑡

|𝑇 𝑠 |

MC vs TD

Reinforcement Learning Beyond Q-Learning 23

• If estimate of V does not change during episode (as in MC methods)
• If V is updated during episode (as in TD(0)) identity is not exact

• If step size is small it still holds approximately
• TD does better credit assignment and does not need to wait termination
• MC better ‘offline’ and more stable, TD more incremental

Monte Carlo Update 1-step TD Update

n-step TD Methods

Reinforcement Learning Beyond Q-Learning 24

• Unify MC and one-step TD methods
• Generalize them so to smoothly switch among them
• Motivation: one-step might not be enough to get significant state changes
• Solution: enable bootstrapping to occur over multiple steps

• n-step return:
𝐺𝑡:𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡+𝑛 −1(𝑠𝑡+𝑛)

• For all n, t such that 𝑛 ≥ 1 and 0 ≤ 𝑡 < 𝑇 − 𝑛
• Approximates full return truncated after n steps
• Needs to wait until it sees 𝑟𝑡+𝑛 and computed

𝑉𝑡+𝑛−1 (at t+n)

n-step TD Methods

Reinforcement Learning Beyond Q-Learning 25

Can you explain why?

n-step SARSA

Reinforcement Learning Beyond Q-Learning 26

The off-policy version also exists

n-step SARSA

Reinforcement Learning Beyond Q-Learning 27

• Reward 0 everywhere except at G
• One-step methods strengthen only last action
• n-step methods strengthen last n actions

Action-Value Unstable

Reinforcement Learning Beyond Q-Learning 28

• Scenario:
• Short corridor, reward -1 per step
• Actions: right and left
• Actions effect are as usual in first and third states, reversed in second state
• All states appear identical in their featurization 𝑥 𝑠, right = 1,0 𝑇 and 𝑥 𝑠, left =

0,1 𝑇

• Value-based methods have big oscillations
while training

• Choice of actions may change dramatically
for arbitrarily small change in action value

Beyond Action-Value

Reinforcement Learning Beyond Q-Learning 29

• Action-value methods
• Learn values of actions
• Select actions based on their estimated action-value
• Difficult for continuous actions

• Policy gradient methods
• Learn a parameterized policy 𝜋 𝑎 𝑠, 𝜃 - Parameters 𝜃

• Select actions without consulting a value function
• Requirements: Policy must be differentiable and should never become deterministic

• Value function may still be used to learn policy parameters
• Not required for action selection

• Can be learned as well using approximation, as ො𝑣(𝑠, 𝑤) - Weights w

Beyond Action-Value

Reinforcement Learning Beyond Q-Learning 30

Policy Gradient

Reinforcement Learning Beyond Q-Learning 31

• Policy gradient methods learn policy parameters based on 𝐽(𝜃) = 𝑣𝜋𝜃(𝑠0)

• Metric with respect to policy parameters
• Guaranteed to converge to local maximum or global maximum
• Disadvantage: often converge only to local optimum

• Attempt to maximize performance through gradient ascent
𝜃𝑡+1 = 𝜃𝑡 + 𝛼 ෣∇𝐽(𝜃𝑡)

• ෣∇𝐽(𝜃𝑡) is a stochastic estimate
• Its expectation approximates gradient of performance wrt params 𝜃𝑡

• Methods that learn approximations to both policy and value functions are called actor-critic methods
• Subset of policy-gradient methods

PG Action Selection

Reinforcement Learning Beyond Q-Learning 32

• Action with highest preference are given highest probability of selection
• E.g., exponential soft-max distribution

𝜋 𝑎 𝑠, 𝜃 =
𝑒ℎ 𝑠,𝑎,𝜃

σ𝑏 𝑒
ℎ 𝑠,𝑏,𝜃

• Advantages:
• Policy can approach deterministic (eps greedy can’t)
• Enables selection of actions with arbitrary probabilities
• Easy to inject prior knowledge and more effective in high-dimensional action space
• Action probabilities change smoothly

• Action preferences can be parameterized as desired
• E.g., NN where parameters are network weights
• E.g., linear in features: h 𝑠, 𝑎, 𝜃 = 𝜃𝑇𝑥(𝑠, 𝑎), x(s,a) being computed features

• Policy might be simpler to approximate than action-value functions

PG Challenges

Reinforcement Learning Beyond Q-Learning 33

• Performance depends on:
• Action selection
• State distribution
• Both are affected by policy params

• Given a state, effects of policy params can be easily computed
• Effects of state distribution depend on environment

• They are typically unknown

Theoretical answers are given by policy gradient theorem

∇𝐽 𝜃 ∝ 𝐸𝜋 ෍

𝑎

∇𝜋 𝑎 𝑠𝑡 𝑞𝜋 𝑠𝑡 , 𝑎

• Provides analytic expression for gradient of performance wrt policy params
• Does not involve derivative of state distribution

REINFORCE

Reinforcement Learning Beyond Q-Learning 34

∇𝐽 𝜃 = 𝐸𝜋 ෍

𝑎

∇𝜋 𝑎 𝑠𝑡 , 𝜃 𝑞𝜋 𝑠𝑡, 𝑎 = 𝐸𝜋 ෍

𝑎

𝜋 𝑎 𝑠𝑡 , 𝜃 𝑞𝜋 𝑠𝑡, 𝑎
∇𝜋 𝑎 𝑠𝑡 , 𝜃

𝜋 𝑎 𝑠𝑡 , 𝜃
= 𝐸𝜋 𝑞𝜋 𝑠𝑡, 𝑎𝑡

∇𝜋 𝑎𝑡 𝑠𝑡 , 𝜃

𝜋 𝑎𝑡 𝑠𝑡 , 𝜃
= 𝐸𝜋 𝐺𝑡

∇𝜋 𝑎𝑡 𝑠𝑡 , 𝜃

𝜋 𝑎𝑡 𝑠𝑡 , 𝜃

Because 𝐸𝜋 𝐺𝑡 𝑠𝑡 , 𝑎𝑡 = 𝑞𝜋(𝑠𝑡 , 𝑎𝑡)

Hence increment is proportional to product of:
• Return and Gradient of probability of taking action taken divided by probability of taking it

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝐺𝑡
∇𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡
𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡

- Direction in parameter space that most
increases probability of taking that action
in that state
- Increases proportional to return and
Inversely proportional to action probability
(otherwise frequent actions have advantage)

Actor-Critic

Reinforcement Learning Beyond Q-Learning 35

• Reinforce converges to local minimum
• It’s MC → Tends to learn slowly
• Inconvenient for online or continuing problems

• TD methods help eliminating these problems
• To gain these advantages in case of PG we use actor-critic methods

• Critic (value function) bootstraps

• Replace full return of REINFORCE with one-step return

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝐺𝑡:𝑡+1−ො𝑣(𝑠𝑡, 𝑤))
∇𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡
𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡

= 𝜃𝑡 + 𝛼(𝑟𝑡+1 + 𝛾 ො𝑣(𝑠𝑡+1, 𝑤) − ො𝑣(𝑠𝑡, 𝑤))
∇𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡
𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡

= 𝜃𝑡 + 𝛼𝛿𝑡
∇𝜋 𝑎𝑡 𝑠𝑡, 𝜃𝑡
𝜋 𝑎𝑡 𝑠𝑡 , 𝜃𝑡

1-step Actor-Critic

Reinforcement Learning Beyond Q-Learning 36

Continuous Actions

Reinforcement Learning Beyond Q-Learning 37

• PG is practical for large action spaces that are even continuous
• Learn statistics of probability distribution instead of computing learned

probabilities for each action
• E.g., choose actions from a normal distribution
• Function approximation is done for mean and std

𝜋 𝑎 𝑠, 𝜃 =
1

𝜎 𝑠, 𝜃 2𝜋
exp −

𝑎 − 𝜇 𝑠, 𝜃
2

2𝜎 𝑠, 𝜃

Features in RL

Reinforcement Learning Beyond Q-Learning 38

• Features add prior domain knowledge to RL systems
• Correspond to aspects of state space along which generalization is

appropriate

• Examples:
• Polynomials - E.g., 𝑥 𝑠 = (1, 𝑠1, 𝑠2, 𝑠1𝑠2, 𝑠1

2, 𝑠2
2, 𝑠1𝑠2

2, 𝑠1
2𝑠2, 𝑠1

2𝑠𝑠
2)

• Fourier Basis
• Coarse Coding
• Tile Coding
• Radial Basis Functions

Fourier Basis

Reinforcement Learning Beyond Q-Learning 39

• Easy to use
• Perform well in a range of problems
• 𝑠 ∈ 0,1 , 𝑐 ∈ {0,… , 𝑛}

Coarse Coding

Reinforcement Learning Beyond Q-Learning 40

• State space is continuous
• Create ‘circles’ in state space
• If state is inside a circle, feature is 1, otherwise 0
• Features of this type overlap

Tile Coding

Reinforcement Learning Beyond Q-Learning 41

• Form of coarse coding that is flexible and
computationally efficient

• More tilings enable generalization
outside the same box

Radial Basis Functions

Reinforcement Learning Beyond Q-Learning 42

• Generalize coarse coding to continuous features

