« ha .

Beyond Q-Learning

Roberto Capobianco

Reinforcement Learning

SAPIENZA

WS/ UNIVERSITA DI ROMA

SAPIENZA

&/ UNIVERSITA DI ROMA

Differently from dynamic programming (and more generally planning) we do
not assume complete knowledge of the environment.

RL methods require only experience MET pses EwmowEw
 Model (world) generates only transitions

/\
* Probability distribution of transitions is unknown q
v

e Reward function is unknown cotronard T

-Newstate s’ € S

Value of a state is the expected cumulated return from that state

Reinforcement Learning Beyond Q-Learning 2

Notation & Assumptions § Saprienza

UNIVERSITA DI ROMA

Previous part of the course: state is x
Now: stateis s

Transition probability: P(s’|s,a)
Assumptions:

* Experience is divided into episodes

* All episodes eventually terminate
 Only on completion of episode values are estimated and policies changed

Reinforcement Learning Beyond Q-Learning 3

UNIVERSITA DI ROMA

Action Values § SAPIENZA

* |f model not available, action values g are very useful
* More than state values, that do not determine a policy
e State values need a lookahead step to see which action is best
 Without model, state values are not sufficient

* Policy evaluation if model unknown consists in estimating g (s, a)
* Expected return starting in s, taking action a and then following
* Essentially the same as estimating state values

Learn policy
(state->action) to

maximize reward Environmen t State Action Q- e
East
South
West
South
West
Morth
East
MNorth

=

SO S1

K g [*} E

State /

feedback Action

BZARCNRCENOR O RCY KO NO]
QIO D|oID|D|D|0| s
o o v o o o

I O -

Environment

Action changes

Reinforcement Learning Beyond Q-Learning

Overall Schema § Syienz

UNIVERSITA DI ROMA

e Similar to dynamic programming (policy iteration)
* Maintain approximate policy and approximate value for policy
* Value is repeatedly altered to better approximate value of
* Policy is repeatedly improved with respect to current value
* Creates moving target for each other, while approaching optimality

evaluation
Q = {5

/\Q
/
W

improvement

Reinforcement Learning Beyond Q-Learning 5

RL Policy Iteration ® PIENZA

e Alternate complete steps of policy evaluation (E) and improvement (I)
* Begin with arbitrary policy
* End with optimal policy and action-value function

I E

I E I E
P — Gy —F Ty —F - —> T — (s

E
T — (I

* Evaluation is done with value estimate
* Many episodes experienced
 Approximate action-value function approaches true one
* Assume we observe infinite episodes: qy, is exact for an arbitrary policy

* Policy evaluation is DIFFICULT

Reinforcement Learning Beyond Q-Learning 6

RL Policy Improvement ¥ o/DIENZA

* Policy improvement: make policy greedy wrt current value function
* No modelis needed, because we have action value function

 m(s) = argmax,q(s,a)
* Policy improvement is done by setting 1y .4 as greedy policy wrt q,

* Policy improvement theorem applies to T, and .4, since

G (5. Te1(5)) = Gy (5, argmax,qr, (s,0)) = max qr, (5, @) 2 qr, (5,7 (5)) = v, (5)

Reinforcement Learning Beyond Q-Learning 7

RL Policy Improvement $ OAPIENZA

* Policy improvement: make policy greedy wrt current value function
* No modelis needed, because we have action value function

 m(s) = argmax,q(s,a)
* Policy improvement is done by setting 1y .4 as greedy policy wrt q,

* Policy improvement theorem applies to T, and .4, since

G (5. Te1(5)) = Gy (5, argmax,qr, (s,0)) = max qr, (5, @) 2 qr, (5,7 (5)) = v, (5)

This is the easy part

Reinforcement Learning Beyond Q-Learning 8

SARSA and Q-Learning § SAPiENZA

UNIVERSITA DI ROMA

SARSA Q-Learning

Algorithm parameters: step size o € (0,1], small £ > 0 Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0 Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode: Loop for each episode:
Initialize S Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy) Loop for each step of episode:
Loop for each step of episode: Choose A [rom S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’ Take action A, observe t, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy) Q(S, A) < Q(S,A) + Q[R +ymax, Q(S",a) — Q(S, A)]
Q(S, A) < Q(S, A) + a[R +7Q(S", A') = Q(S, A)] Se 8
S 8 A+ A until S is terminal

until S is terminal

Safer path

Optimal path ‘ |

Reinforcement Learning Beyond Q-Learning

Data Collection § SAPiENzA

/& UNIVERSITA DT ROMA

e Affects the policy evaluation step

* On-policy (e.g. SARSA) learns gs for a near-optimal policy that explores
* Try to learn action values conditional on subsequent optimal behavior
* Need to behave non-optimally to explore all actions
 Behavior and learning policy are the same

* Off-policy (e.g., Q-Learning):
 Use two policies:
* One to be learned (target policy)
 One to generate behavior (behavior policy)

Reinforcement Learning Beyond Q-Learning

Data Collection § SAPiENzA

W/ UNIVERSITA DI ROMA

* On-policy (e.g. SARSA) learns gs for a near-optimal policy that explores
* Try to learn action values conditional on subsequent optimal behavior
* Need to behave non-optimally to explore all actions
 Behavior and learning policy are the same

e Off-policy (e.g., Q-Learning):
* Use two policies:
* One to be learned (target policy)
 One to generate behavior (behavior policy)

WHY IS Q-LEARNING OFF-POLICY?

Reinforcement Learning Beyond Q-Learning 11

e-greedy ® oLLENA

* Policy is generally soft

 m(als) >0, Vs €S, VaceEA(s)

* Gradually shifted closer and closer to deterministic optimal policy
 We consider e-greedy policies

* All nongreedy actions are given the minimal probability of selection d

|A(s)|

€
|A(s)|
for all states, actions and for some € > 0

* Greedy action has probability 1 — € +
€
|A(s)]

* Closest to greedy among e-soft policies
* Why do we need this?

« e-soft policy: m(als) =

Reinforcement Learning Beyond Q-Learning)

e-greedy * ® oARIENZA

* Policy is generally soft

 m(als) >0, Vs €S, VaceEA(s)

* Gradually shifted closer and closer to deterministic optimal policy
 We consider e-greedy policies

* All nongreedy actions are given the minimal probability of selection
€

|A(s)|
for all states, actions and for some € > 0

€

|A(s)|

* Greedy action has probability 1 — € +
€
|A(s)]

* Closest to greedy among e-soft policies
* Why do we need this? We need to estimate value of all actions, not just

favored ones: EXPLORATION

« e-soft policy: m(als) =

Reinforcement Learning Beyond Q-Learning 13

Explore VS Exploit

SAPIENZA

UNIVERSITA DI ROMA

Reinforcement Learning

-
- L

EXPLOITATION

Playing the machine that (currently)
pays out the most,

EXPLORATION

Playing the other machines to see
if any pay out more.

Beyond Q-Learning

14

RL Target § sarienza

UNIVERSITA DI ROMA

 Central idea: update a(n) (action-)value function
 All approaches use this general update step
V(se) < V(se) +a[Ty —V(se)]
* T;:target computed at time t
* «:constant or adaptive step-size
 Update is done every time non-terminal state is visited

* Target can be computed via
* (n-step) Bootstrapping or TD error (sampled or expected)
 Monte-Carlo sampling

Reinforcement Learning Beyond Q-Learning 15

Temporal Difference ® oLLENA

* Estimates based on other learned estimates without waiting final outcome

* Bootstrapping
e Q-Learning and SARSA are 1-step TD (lookahead of 1 step)

Note also that Q-learning is exactly the same as dynamic programming in deterministic MDPs
 TD error measures difference between:

* Estimated value of s;
* Better estimate Tryy = Ryyq + YV (Sg41)

Ot = Repq + ¥V (Sey1) —V(se)
 TD error at each time is the error in estimate made at that time
 Depends on next state and reward, so not available until t+1

Reinforcement Learning Beyond Q-Learning

Expected VS Sampled

%0 SAPIENZA

UNIVERSITA DI ROMA

Value Expected updates
estimated (DP)
F.
W
14
Ur () -
S,
policy evaluation
5
(i
ve(S) r
3'
value iteration

Reinforcement Learning

Sample updates
(one-step TD)

5 5,0 5,0
pAT
5 R
A s’
S, 0
R Q‘.rr{]) T
Sl I'.:IlII A-r
TD(O) g-policy evaluation Sarsa
5.a s.a
T
"\ R
q+(s, a) s’
M&ax
ﬂ‘l {;'
g-value iteration Q-leaming

Beyond Q-Learning 17

Expected TD ® oADIENA

* Like Q-learning, except that instead of max uses expected value

* Takes into account how likely each action is under current policy
Q(sp,ar) « Q(sp,ar) + alReyq + VEL[Q(St41, ary)ISe41] — Q(se, ar)]

< Q(sp,ar) + a[Reyq + Vz m(alst41)Q(Str1,a) — Q(St, ar)]

* Moves deterministically in the same direction as Sarsa moves in expectation

* More complex than Sarsa
* Removes variance from Sarsa due to random selection of a;,4

e (Can be on-policy or off-policy (named Expected Sarsa)

|
: /N

(Q)-learning Expected Sarsa

Reinforcement Learning Beyond Q-Learning 18

Monte Carlo Methods W SAPIENZA

Monte Carlo methods:

 Sample and average complete returns for each state-action pair
 |dea from the definition of value function (expected return)

* Target G;: return after time t (needs the episode to finish)

Why Monte Carlo?
Estimation involves significant random component (here, complete return)

Can be on-policy or off-policy

Reinforcement Learning Beyond Q-Learning 19

On-policy MC Control § SaPiEnzA

UNIVERSITA DI ROMA

Algorithm parameter: small € > 0

Initialize:
7 ¢— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, y,...,Sp—1, Ap_1, Rp
G0
Loop for each step of episode, t =T —1,T-2,...,0:
G G+ Ry
Unless the pair S;, A; appears in Sy, Ag, S1, Ay ..., 51, Ay_1:
Append G to Returns(S;, Ay)
(S, Ay) « average(Returns(S;, A;))
A* « argmax, Q(S;,a) (with ties broken arbitrarily)
For all a € A(S,):
1 —e+e/|A(S)] ifa=A*
m(alSi) { e /IA(S)) ifa £ A*

Reinforcement Learning Beyond Q-Learning 20

Off-Policy Evaluation % § SAPIENZA

UNIVERSITA DI ROMA

* Happens at policy evaluation: both target and behavior policies are fixed
* Tryto estimate v, or q,; for target policy
* All we have are episodes following another policy b

* To use episodes from b, require that
 Every action taken under i is also taken under b
 m(als) >0 - b(a|s) > 0 (coverage assumption)
b must be stochastic in states where it is not identical to i
 Target policy is typically deterministic greedy wrt current estimate
* Behavior policy remains stochastic (e.g., e-greedy)

Reinforcement Learning Beyond Q-Learning 21

SAPIENZA

Importance Sampling W APIENZA

* Importance sampling:
* Estimates expected values under a distribution given samples from another
* Applied to off-policy learning by weighting returns
* Weight: relative probability of trajectories occurring under both policies
* Known as importance-sampling ratio

* Relative probability (importance-sampling ratio) is

p _ [T=t m(alsi)p(Sk+1l5k ak) _ T 17 &lsk)
T Mzt blaglsopGialsioad) L Lb(aelsi)

* We want to estimate expected returns of mr, with returns G; from b
* Ratio transforms them:

ZteT(pt:Termination(t)—th
Elpr.r—1Gelse] = v (s) =) T(s)]|

Beyond Q-Learning 22

Reinforcement Learning

SAPIENZA

WL/ UNIVERSITA DI ROMA

* |f estimate of V does not change during episode (as in MC methods)
* If Vis updated during episode (as in TD(0)) identity is not exact
* |f step size is small it still holds approximately
 TD does better credit assignment and does not need to wait termination
e MC better ‘offline’ and more stable, TD more incremental

45 - 45 -

_.actual outcome actual
outcome
_ 40 - 40 -
Predicted
total
travel ;5. 35
time
30 - 30 -
T | T T | T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home
Situation Situation
Monte Carlo Update 1-step TD Update

Reinforcement Learning Beyond Q-Learning 23

n-step TD Methods § Syienz

UNIVERSITA DI ROMA

 Unify MC and one-step TD methods

* Generalize them so to smoothly switch among them

 Motivation: one-step might not be enough to get significant state changes
e Solution: enable bootstrapping to occur over multiple steps

° n_S te p re tu rn: and(%D(O) 2-st$TD 3-st$ TD n-st$ TD and Mo(r%e Carlo
Grtan = Texr T VTer2 V™ e + ¥ Viesn -1 (Sen) ! ! ! T]
S G S S
e Foralln,tsuchthatn >21and0<t<T —n O %; % ?
 Approximates full return truncated after n steps J} : !
* Needs to wait until it sees 13, and computed T ?
O

Vi+n—1 (at t+n)

.4—. e

Reinforcement Learning Beyond Q-Learning pYA

SAPIENZA

UNIVERSITA DI ROMA

n-step TD Methods

Reinforcement Learning

Average
RMS error
over 19 states
and first 10
episodes

055

05

045

04

035

03

025

Can you explain why?

Beyond Q-Learning

25

n-step SARSA

SAPIENZA

UNIVERSITA DI ROMA

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @), or to a fixed given policy

Algorithm parameters: step size o € (0, 1], small £ > 0, a positive integer n

All store and access operations (for S;, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ 7(+|Sp)

T ¢+ o0
Loop for t =0,1,2,...:
| Ift<T, then:

| Take action A,

| Observe and store the next reward as Ry, and the next state as S; 4,
| If Sy41 is terminal, then:

| T+ t+1

| else:

| Select and store an action Ay ~ w(-|S¢+1)

| 7+ t—n+1 (7isthe time whose estimate is being updated)

| If7>0:

| Ge TR,

| If 7+n<T,then G+ G+ y"Q(Sr4n, Arin) (Grirign)
| Q(S+,Ar) + Q(Sr, A7) + a[G — Q(S-, A;)]

| If 7 is being learned, then ensure that n(-|S;) is e-greedy wrt Q
Untilt=T -1

Reinforcement Learning

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

x
[

T []
S SIS S
? ocf?
(f : . .

l

! 1
1 AN

The off-policy version also exists

Beyond Q-Learning 26

n-step SARSA

 Reward 0 everywhere except at G
* One-step methods strengthen only last action
* n-step methods strengthen last n actions

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa

> > +
¥

>y

G G G| |+

t s Fe]e

Beyond Q-Learning 27

Reinforcement Learning

Action-Value Unstable § Sapienza

UNIVERSITA DI ROMA

* Scenario:
 Short corridor, reward -1 per step
 Actions: right and left
* Actions effect are as usual in first and third states, reversed in second state
e All states appear identical in their featurization x(s, right) = [1,0]7 and x(s, left) =
[0,1]"

116

B0k optimal
stochastic _ . .
policy * Value-based methods have big oscillations
40 F
J(0) = v,,(S) €-greedy right while training
e - * Choice of actions may change dramatically
‘i‘a‘H‘ G \ for arbitrarily small change in action value
B0F ¢ e-greedy left
A00 F

i 'l i i i L L i Il L i
0 01 02 03 04 05 06 07 08 08 1

probability of right action

Reinforcement Learning Beyond Q-Learning 28

Beyond Action-Value § Syienz

UNIVERSITA DI ROMA

 Action-value methods
 Learn values of actions
 Select actions based on their estimated action-value
e Difficult for continuous actions

* Policy gradient methods

* Learn a parameterized policy w(als, 8) - Parameters 8
e Select actions without consulting a value function
 Requirements: Policy must be differentiable and should never become deterministic

* Value function may still be used to learn policy parameters
* Not required for action selection

* Can be learned as well using approximation, as ?(s, w) - Weights w

Reinforcement Learning Beyond Q-Learning 29

UNIVERSITA DI ROMA

Beyond Action-Value § SAPIENZA

Please wait I've
still 20 890 actions to
calculate their
Q values before
giving you the best
action to take

L)
- B
"'!‘_._\; 2 7, °
.
Policy Gradient q:l
L)
Deep Q-learning
Reinforcement Learning Beyond Q-Learning 30

Policy Gradient §) SAPIENZA

UNIVERSITA DI ROMA

* Policy gradient methods learn policy parameters based on J(6) = v, (s,)

 Metric with respect to policy parameters
 Guaranteed to converge to local maximum or global maximum
 Disadvantage: often converge only to local optimum
 Attempt to maximize performance through gradient ascent
Ory1 = 0 +aVJ(6;)
* VJ(0;) is a stochastic estimate

* Its expectation approximates gradient of performance wrt params 6;
 Methods that learn approximations to both policy and value functions aré°€éﬂ‘féfﬂ”actor critic tiéttiods
 Subset of policy-gradient methods |

The policy

Reinforcement Learning Beyond Q-Learning 31

PG Action Selection § SAPIENZA

UNIVERSITA DI ROMA

* Action with highest preference are given highest probability of selection

 E.g., exponential soft-max distribution

eh(s,a,@)

r(als, 8) = Y, eh(sb,0)

 Advantages:
e Policy can approach deterministic (eps greedy can’t)
* Enables selection of actions with arbitrary probabilities
* Easy toinject prior knowledge and more effective in high-dimensional action space
e Action probabilities change smoothly

e Action preferences can be parameterized as desired

 E.g., NN where parameters are network weights
« E.g., linearin features: h(s,a,8) = 87x(s, a), x(s,a) being computed features

* Policy might be simpler to approximate than action-value functions

Reinforcement Learning Beyond Q-Learning 32

PG Challenges W APIENZA

 Performance depends on:

 Action selection
e State distribution
 Both are affected by policy params

* Q@Given a state, effects of policy params can be easily computed
* Effects of state distribution depend on environment

 They are typically unknown

Theoretical answers are given by policy gradient theorem

VJ(8) o Er | > Vr(als)gn(se, @

* Provides analytic expression for gradient of performance wrt policy params
 Does not involve derivative of state distribution

Reinforcement Learning Beyond Q-Learning 33

REINFORCE - DAPIENZA

Vj(0) = Eg

D Vn(als;, 0)qx(s:, @)

UNIVERSITA DI ROMA

Vr(alse, 6)

=FE
" n(alse, 6)

D m(alse, 0)4x(s:, 0)

a

Vr(a;|se, 6) Vr(a;|se, 6)
=En [Chr(str ag) e = Eg ! —

m(ae|se, 6) B ‘ m(aelse, 6)

Because Er[Gelst, ar] = qr(se, ar)

Input: a differentiable policy parameterization w(als, 8)
Algorithm parameter: step size a > ()
Initialize policy parameter @ € RY (e.g., to 0)

Loop forever (for cach episode):

Generate an episode Sy, Ag, Ry,..., 871, Ap—1, Ry, following = (|-, 8)
Loop for each step of the episode t =0,1,..., T — 1:
T e
G Zk=e+1 ARy (G)

0 — 0+ ay'GVInn(A|S;,0)

Hence increment is proportional to product of:
 Return and Gradient of probability of taking action taken divided by probability of taking it

Reinforcement Learning

¢ Vﬂ(atlst' Ht) - Direction in parameter space that most
ﬂ(at |St; Ht) increases probability of taking that action

in that state

- Increases proportional to return and

Inversely proportional to action probability

(otherwise frequent actions have advantage)

9t+1 - Qt + AdG

Beyond Q-Learning 34

Actor-Critic $5 OAPIENZA

UNIVERSITA DI ROMA

* Reinforce converges to local minimum
* It's MC = Tends to learn slowly
* Inconvenient for online or continuing problems

« TD methods help eliminating these problems
* To gain these advantages in case of PG we use actor-critic methods
e Critic (value function) bootstraps

* Replace full return of REINFORCE with one-step return

Vr(agls, 0¢) Vr(ails:, 6;)
=0, 4+ a(riy 1 +vU(Serq,Ww) — U(sp, W
T[(atlst; Qt) t (t+1 4 (t+1) (t)) T[(atlst; Ht)

Ori1 = 0r + a(Gr.e41— V(S W))

Vr(a;|s;, 0;)
‘ m(a.|se, 0;)

=9t+a5

Reinforcement Learning Beyond Q-Learning 35

UNIVERSITA DI ROMA

1-step

Reinforcement Learning

Actor-Critic § SApiENzZA

Input: a differentiable policy parameterization w(a|s, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a? >0, o™ >0
Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I« 1
Loop while S is not terminal (for each time step):
A~ (]S, 0)
Take action A, observe S', R
§ +— R+ ~vo(S",w) — 0(5,w) (if S’ is terminal, then o(S',w) = 0)

w +— w + aViVo(S,w)
0« 0+ a’l15VInn(A|S,0)
I~

S+ 5

Beyond Q-Learning 36

Continuous Actions RN

PG is practical for large action spaces that are even continuous

e Learn statistics of probability distribution instead of computing learned
probabilities for each action
 E.g., choose actions from a normal distribution
* Function approximation is done for mean and std

w(als,0) =

1 (_ (a — u(s, 9))2)
o(s,0v2m ¥ 20(s, 6)

Reinforcement Learning Beyond Q-Learning 37

Features in RL M SAPTENZA

* Features add prior domain knowledge to RL systems
 Correspond to aspects of state space along which generalization is

appropriate

 Examples:
 Polynomials - E.g., x(s) = (1, Sy, Sy, 515y, 5%, S5, 515%,5%5,,5252)
* Fourier Basis
* Coarse Coding
* Tile Coding
* Radial Basis Functions

Reinforcement Learning Beyond Q-Learning 38

Fourier Basis W DAPIENZA

 Easyto use zi(s) = cos (7s' ')
 Perform well in a range of problems
- se01], ce€{0,..,n}

Reinforcement Learning Beyond Q-Learning

Coarse Coding

* State space is continuous

* Create ‘circles’ in state space

 |f state is inside a circle, feature is 1, otherwise O
* Features of this type overlap

(A
(A A <
’%!- S
_be)

Narrow generalization Broad generalization Asymmetric generalization

Reinforcement Learning Beyond Q-Learning

40

Tile Coding § APIENZA

 Form of coarse coding that is flexible and
computationally efficient -
* More tilings enable generalization generalizations

for uniformly

. offset tilings
outside the same box
Tiling1 — ___
Tiline 2 — [| | |
ng S e e
Tiling 3
Ting | T i Four active
: [~ tiles/features
e-- — overlap the point Possible
" . |— and are used to generalizations
N B == : reprosent it for asymmetrically
N :___{4.__1_:___#__+_: offset tilings

renresented

Reinforcement Learning Beyond Q-Learning

Radial Basis Functions § SaPENzA

UNIVERSITA DI ROMA

 Generalize coarse coding to continuous features

. s —¢i|?
xi(s) = exp (—” 252”)

i

¢ 9 8 o o o' 8 5 a o
28 8 8 8 8 8 3 F 3 3 B
VD G LSS RSty RU Y VS &8 Y 1l ST MYV Sy |

Reinforcement Learning Beyond Q-Learning

