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Differently from dynamic programming (and more generally planning) we do
not assume complete knowledge of the environment.

RL methods require only experience MET pses  EwmowEw
 Model (world) generates only transitions

/\
* Probability distribution of transitions is unknown q
v

e Reward function is unknown cotronard T

-Newstate s’ € S

Value of a state is the expected cumulated return from that state
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Notation & Assumptions § Saprienza
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Previous part of the course: state is x
Now: stateis s

Transition probability: P(s’|s,a)
Assumptions:

* Experience is divided into episodes

* All episodes eventually terminate
 Only on completion of episode values are estimated and policies changed
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Action Values § SAPIENZA

* |f model not available, action values g are very useful
* More than state values, that do not determine a policy
e State values need a lookahead step to see which action is best
 Without model, state values are not sufficient

* Policy evaluation if model unknown consists in estimating g (s, a)
* Expected return starting in s, taking action a and then following
* Essentially the same as estimating state values
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Overall Schema § Syienz
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e Similar to dynamic programming (policy iteration)
* Maintain approximate policy and approximate value for policy
* Value is repeatedly altered to better approximate value of
* Policy is repeatedly improved with respect to current value
* Creates moving target for each other, while approaching optimality

evaluation
Q = {5

/\Q
/
W

improvement
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RL Policy Iteration ® PIENZA

e Alternate complete steps of policy evaluation (E) and improvement (I)
* Begin with arbitrary policy
* End with optimal policy and action-value function

I E

I E I E
P — Gy —F Ty —F - —> T — (s

E
T — (I

* Evaluation is done with value estimate
* Many episodes experienced
 Approximate action-value function approaches true one
* Assume we observe infinite episodes: qy, is exact for an arbitrary policy

* Policy evaluation is DIFFICULT
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RL Policy Improvement ¥ o/DIENZA

* Policy improvement: make policy greedy wrt current value function
* No modelis needed, because we have action value function

 m(s) = argmax,q(s,a)
* Policy improvement is done by setting 1y .4 as greedy policy wrt q,

* Policy improvement theorem applies to T, and .4, since

G (5. Te1(5)) = Gy (5, argmax,qr, (s,0) ) = max qr, (5, @) 2 qr, (5,7 (5)) = v, (5)
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RL Policy Improvement $ OAPIENZA

* Policy improvement: make policy greedy wrt current value function
* No modelis needed, because we have action value function

 m(s) = argmax,q(s,a)
* Policy improvement is done by setting 1y .4 as greedy policy wrt q,

* Policy improvement theorem applies to T, and .4, since

G (5. Te1(5)) = Gy (5, argmax,qr, (s,0) ) = max qr, (5, @) 2 qr, (5,7 (5)) = v, (5)

This is the easy part
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SARSA and Q-Learning § SAPiENZA

UNIVERSITA DI ROMA

SARSA Q-Learning

Algorithm parameters: step size o € (0,1], small £ > 0 Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0  Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0
Loop for each episode: Loop for each episode:
Initialize S Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy) Loop for each step of episode:
Loop for each step of episode: Choose A [rom S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’ Take action A, observe t, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy) Q(S, A) < Q(S,A) + Q[R +ymax, Q(S",a) — Q(S, A)]
Q(S, A) < Q(S, A) + a[R +7Q(S", A') = Q(S, A)] Se 8
S 8 A+ A until S is terminal

until S is terminal

Safer path

Optimal path ‘ |
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Data Collection § SAPiENzA
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e Affects the policy evaluation step

* On-policy (e.g. SARSA) learns gs for a near-optimal policy that explores
* Try to learn action values conditional on subsequent optimal behavior
* Need to behave non-optimally to explore all actions
 Behavior and learning policy are the same

* Off-policy (e.g., Q-Learning):
 Use two policies:
* One to be learned (target policy)
 One to generate behavior (behavior policy)
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Data Collection § SAPiENzA
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* On-policy (e.g. SARSA) learns gs for a near-optimal policy that explores
* Try to learn action values conditional on subsequent optimal behavior
* Need to behave non-optimally to explore all actions
 Behavior and learning policy are the same

e Off-policy (e.g., Q-Learning):
* Use two policies:
* One to be learned (target policy)
 One to generate behavior (behavior policy)

WHY IS Q-LEARNING OFF-POLICY?
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e-greedy ® oLLENA

* Policy is generally soft

 m(als) >0, Vs €S, VaceEA(s)

* Gradually shifted closer and closer to deterministic optimal policy
 We consider e-greedy policies

* All nongreedy actions are given the minimal probability of selection d

|A(s)|

€
|A(s)|
for all states, actions and for some € > 0

* Greedy action has probability 1 — € +
€
|A(s)]

* Closest to greedy among e-soft policies
* Why do we need this?

« e-soft policy: m(als) =
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e-greedy * ® oARIENZA

* Policy is generally soft

 m(als) >0, Vs €S, VaceEA(s)

* Gradually shifted closer and closer to deterministic optimal policy
 We consider e-greedy policies

* All nongreedy actions are given the minimal probability of selection
€

|A(s)|
for all states, actions and for some € > 0

€

|A(s)|

* Greedy action has probability 1 — € +
€
|A(s)]

* Closest to greedy among e-soft policies
* Why do we need this? We need to estimate value of all actions, not just

favored ones: EXPLORATION

« e-soft policy: m(als) =
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Explore VS Exploit

SAPIENZA
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Reinforcement Learning

-
- L

EXPLOITATION

Playing the machine that (currently)
pays out the most,

EXPLORATION

Playing the other machines to see
if any pay out more.

Beyond Q-Learning
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RL Target § sarienza
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 Central idea: update a(n) (action-)value function
 All approaches use this general update step
V(se) < V(se) +a[Ty —V(se)]
* T;:target computed at time t
* «:constant or adaptive step-size
 Update is done every time non-terminal state is visited

* Target can be computed via
* (n-step) Bootstrapping or TD error (sampled or expected)
 Monte-Carlo sampling
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Temporal Difference ® oLLENA

* Estimates based on other learned estimates without waiting final outcome

* Bootstrapping
e Q-Learning and SARSA are 1-step TD (lookahead of 1 step)

Note also that Q-learning is exactly the same as dynamic programming in deterministic MDPs
 TD error measures difference between:

* Estimated value of s;
* Better estimate Tryy = Ryyq + YV (Sg41)

Ot = Repq + ¥V (Sey1) —V(se)
 TD error at each time is the error in estimate made at that time
 Depends on next state and reward, so not available until t+1
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Expected VS Sampled

%0 SAPIENZA
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Value Expected updates
estimated (DP)
F.
W
14
Ur () -
S,
policy evaluation
5
(i
ve(S) r
3'
value iteration

Reinforcement Learning

Sample updates
(one-step TD)
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5.a s.a
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M&ax
ﬂ‘l {;'
g-value iteration Q-leaming
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Expected TD ® oADIENA

* Like Q-learning, except that instead of max uses expected value

* Takes into account how likely each action is under current policy
Q(sp,ar) « Q(sp,ar) + alReyq + VEL[Q(St41, ary)ISe41] — Q(se, ar)]

< Q(sp,ar) + a[Reyq + Vz m(alst41)Q(Str1,a) — Q(St, ar)]

* Moves deterministically in the same direction as Sarsa moves in expectation

* More complex than Sarsa
* Removes variance from Sarsa due to random selection of a;,4

e (Can be on-policy or off-policy (named Expected Sarsa)

|
: /N

(Q)-learning Expected Sarsa
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Monte Carlo Methods W SAPIENZA

Monte Carlo methods:

 Sample and average complete returns for each state-action pair
 |dea from the definition of value function (expected return)

* Target G;: return after time t (needs the episode to finish)

Why Monte Carlo?
Estimation involves significant random component (here, complete return)

Can be on-policy or off-policy
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On-policy MC Control § SaPiEnzA
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Algorithm parameter: small € > 0

Initialize:
7 ¢— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ag, y,...,Sp—1, Ap_1, Rp
G0
Loop for each step of episode, t =T —1,T-2,...,0:
G G+ Ry
Unless the pair S;, A; appears in Sy, Ag, S1, Ay ..., 51, Ay_1:
Append G to Returns(S;, Ay)
(S, Ay) « average(Returns(S;, A;))
A* « argmax, Q(S;,a) (with ties broken arbitrarily)
For all a € A(S,):
1 —e+e/|A(S)] ifa=A*
m(alSi) { e /IA(S)) ifa £ A*
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Off-Policy Evaluation % § SAPIENZA
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* Happens at policy evaluation: both target and behavior policies are fixed
* Tryto estimate v, or q,; for target policy
* All we have are episodes following another policy b

* To use episodes from b, require that
 Every action taken under i is also taken under b
 m(als) >0 - b(a|s) > 0 (coverage assumption)
b must be stochastic in states where it is not identical to i
 Target policy is typically deterministic greedy wrt current estimate
* Behavior policy remains stochastic (e.g., e-greedy)
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Importance Sampling W APIENZA

* Importance sampling:
* Estimates expected values under a distribution given samples from another
* Applied to off-policy learning by weighting returns
*  Weight: relative probability of trajectories occurring under both policies
*  Known as importance-sampling ratio

* Relative probability (importance-sampling ratio) is

p _ [T=t m(alsi)p(Sk+1l5k ak) _ T 17 &lsk)
T Mzt blaglsopGialsioad) L Lb(aelsi)

* We want to estimate expected returns of mr, with returns G; from b
* Ratio transforms them:

ZteT( pt:Termination(t)—th
Elpr.r—1Gelse] = v (s) = ) T(s)]|

Beyond Q-Learning 22

Reinforcement Learning




SAPIENZA
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* |f estimate of V does not change during episode (as in MC methods)
* If Vis updated during episode (as in TD(0)) identity is not exact
* |f step size is small it still holds approximately
 TD does better credit assignment and does not need to wait termination
e MC better ‘offline’ and more stable, TD more incremental

45 - 45 -

_.actual outcome actual
outcome
_ 40 - 40 -
Predicted
total
travel ;5. 35
time
30 - 30 -
T | T T | T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home
Situation Situation
Monte Carlo Update 1-step TD Update
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n-step TD Methods § Syienz
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 Unify MC and one-step TD methods

* Generalize them so to smoothly switch among them

 Motivation: one-step might not be enough to get significant state changes
e Solution: enable bootstrapping to occur over multiple steps

° n_S te p re tu rn: and(%D(O) 2-st$TD 3-st$ TD n-st$ TD and Mo(r%e Carlo
Grtan = Texr T VTer2 V™ e + ¥ Viesn -1 (Sen) ! ! ! T ]
S G S S
e Foralln,tsuchthatn >21and0<t<T —n O %; % ?
 Approximates full return truncated after n steps J} : !
* Needs to wait until it sees 13, and computed T ?
O

Vi+n—1 (at t+n)

.4—. e
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SAPIENZA
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n-step TD Methods

Reinforcement Learning

Average
RMS error
over 19 states
and first 10
episodes

055

05

045

04

035

03

025

Can you explain why?

Beyond Q-Learning
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n-step SARSA

SAPIENZA
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Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @), or to a fixed given policy

Algorithm parameters: step size o € (0, 1], small £ > 0, a positive integer n

All store and access operations (for S;, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ 7(+|Sp)

T ¢+ o0
Loop for t =0,1,2,...:
| Ift<T, then:

| Take action A,

| Observe and store the next reward as Ry, and the next state as S; 4,
| If Sy41 is terminal, then:

| T+ t+1

| else:

| Select and store an action Ay ~ w(-|S¢+1)

| 7+ t—n+1 (7isthe time whose estimate is being updated)

| If7>0:

| Ge TR,

| If 7+n<T,then G+ G+ y"Q(Sr4n, Arin) (Grirign)
| Q(S+,Ar) + Q(Sr, A7) + a[G — Q(S-, A;)]

| If 7 is being learned, then ensure that n(-|S;) is e-greedy wrt Q
Untilt=T -1

Reinforcement Learning

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

x
[

T [ ]
S SIS S
? ocf?
(f : . .

l

! 1
1 AN

The off-policy version also exists
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n-step SARSA

 Reward 0 everywhere except at G
* One-step methods strengthen only last action
* n-step methods strengthen last n actions

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa

> > +
¥

>y

G G G| |+

t s Fe]e
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Action-Value Unstable § Sapienza
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* Scenario:
 Short corridor, reward -1 per step
 Actions: right and left
* Actions effect are as usual in first and third states, reversed in second state
e All states appear identical in their featurization x(s, right) = [1,0]7 and x(s, left) =
[0,1]"

116

B0k optimal
stochastic _ . .
policy * Value-based methods have big oscillations
40 F
J(0) = v,,(S) €-greedy right while training
e - * Choice of actions may change dramatically
‘i‘a‘H‘ G \ for arbitrarily small change in action value
B0F ¢ e-greedy left
A00 F

i 'l i i i L L i Il L i
0 01 02 03 04 05 06 07 08 08 1

probability of right action
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Beyond Action-Value § Syienz
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 Action-value methods
 Learn values of actions
 Select actions based on their estimated action-value
e Difficult for continuous actions

* Policy gradient methods

* Learn a parameterized policy w(als, 8) - Parameters 8
e Select actions without consulting a value function
 Requirements: Policy must be differentiable and should never become deterministic

* Value function may still be used to learn policy parameters
* Not required for action selection

* Can be learned as well using approximation, as ?(s, w) - Weights w
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Beyond Action-Value § SAPIENZA

Please wait I've
still 20 890 actions to
calculate their
Q values before
giving you the best
action to take

L)
- B
"'!‘_._\; 2 7, °
.
Policy Gradient q:l
L)
Deep Q-learning
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Policy Gradient §) SAPIENZA
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* Policy gradient methods learn policy parameters based on J(6) = v, (s,)

 Metric with respect to policy parameters
 Guaranteed to converge to local maximum or global maximum
 Disadvantage: often converge only to local optimum
 Attempt to maximize performance through gradient ascent
Ory1 = 0 +aVJ(6;)
* VJ(0;) is a stochastic estimate

* Its expectation approximates gradient of performance wrt params 6;
 Methods that learn approximations to both policy and value functions aré°€éﬂ‘féfﬂ”actor critic tiéttiods
 Subset of policy-gradient methods |

The policy
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PG Action Selection § SAPIENZA
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* Action with highest preference are given highest probability of selection

 E.g., exponential soft-max distribution

eh(s,a,@)

r(als, 8) = Y, eh(sb,0)

 Advantages:
e Policy can approach deterministic (eps greedy can’t)
* Enables selection of actions with arbitrary probabilities
* Easy toinject prior knowledge and more effective in high-dimensional action space
e Action probabilities change smoothly

e Action preferences can be parameterized as desired

 E.g., NN where parameters are network weights
« E.g., linearin features: h(s,a,8) = 87x(s, a), x(s,a) being computed features

* Policy might be simpler to approximate than action-value functions
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PG Challenges W APIENZA

 Performance depends on:

 Action selection
e State distribution
 Both are affected by policy params

* Q@Given a state, effects of policy params can be easily computed
* Effects of state distribution depend on environment

 They are typically unknown

Theoretical answers are given by policy gradient theorem

VJ(8) o Er | > Vr(als)gn(se, @

* Provides analytic expression for gradient of performance wrt policy params
 Does not involve derivative of state distribution
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REINFORCE - DAPIENZA

Vj(0) = Eg

D Vn(als;, 0)qx(s:, @)

UNIVERSITA DI ROMA

Vr(alse, 6)

=FE
" n(alse, 6)

D m(alse, 0)4x(s:, 0)

a

Vr(a;|se, 6) Vr(a;|se, 6)
=En [Chr(str ag) e = Eg ! —

m(ae|se, 6) B ‘ m(aelse, 6)

Because Er[Gelst, ar] = qr(se, ar)

Input: a differentiable policy parameterization w(als, 8)
Algorithm parameter: step size a > ()
Initialize policy parameter @ € RY (e.g., to 0)

Loop forever (for cach episode):

Generate an episode Sy, Ag, Ry,..., 871, Ap—1, Ry, following = (|-, 8)
Loop for each step of the episode t =0,1,..., T — 1:
T e
G Zk=e+1 ARy (G)

0 — 0+ ay'GVInn(A|S;,0)

Hence increment is proportional to product of:
 Return and Gradient of probability of taking action taken divided by probability of taking it

Reinforcement Learning

¢ Vﬂ(atlst' Ht) - Direction in parameter space that most
ﬂ(at |St; Ht) increases probability of taking that action

in that state

- Increases proportional to return and

Inversely proportional to action probability

(otherwise frequent actions have advantage)

9t+1 - Qt + AdG
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Actor-Critic $5 OAPIENZA
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* Reinforce converges to local minimum
* It's MC = Tends to learn slowly
* Inconvenient for online or continuing problems

« TD methods help eliminating these problems
* To gain these advantages in case of PG we use actor-critic methods
e Critic (value function) bootstraps

* Replace full return of REINFORCE with one-step return

Vr(agls, 0¢) Vr(ails:, 6;)
=0, 4+ a(riy 1 +vU(Serq,Ww) — U(sp, W
T[(atlst; Qt) t ( t+1 4 ( t+1 ) ( t )) T[(atlst; Ht)

Ori1 = 0r + a(Gr.e41— V(S W))

Vr(a;|s;, 0;)
‘ m(a.|se, 0;)

=9t+a5
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1-step

Reinforcement Learning

Actor-Critic § SApiENzZA

Input: a differentiable policy parameterization w(a|s, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a? >0, o™ >0
Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I« 1
Loop while S is not terminal (for each time step):
A~ (]S, 0)
Take action A, observe S', R
§ +— R+ ~vo(S",w) — 0(5,w) (if S’ is terminal, then o(S',w) = 0)

w +— w + aViVo(S,w)
0« 0+ a’l15VInn(A|S,0)
I~

S+ 5
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Continuous Actions RN

PG is practical for large action spaces that are even continuous

e Learn statistics of probability distribution instead of computing learned
probabilities for each action
 E.g., choose actions from a normal distribution
* Function approximation is done for mean and std

w(als,0) =

1 (_ (a — u(s, 9))2)
o(s,0v2m ¥ 20(s, 6)
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Features in RL M SAPTENZA

* Features add prior domain knowledge to RL systems
 Correspond to aspects of state space along which generalization is

appropriate

 Examples:
 Polynomials - E.g., x(s) = (1, Sy, Sy, 515y, 5%, S5, 515%,5%5,,5252)
* Fourier Basis
* Coarse Coding
* Tile Coding
* Radial Basis Functions
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Fourier Basis W DAPIENZA

 Easyto use zi(s) = cos (7s' ')
 Perform well in a range of problems
- se01], ce€{0,..,n}
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Coarse Coding

* State space is continuous

* Create ‘circles’ in state space

 |f state is inside a circle, feature is 1, otherwise O
* Features of this type overlap

(A
(A A <
’%!- S
\_be )

Narrow generalization Broad generalization Asymmetric generalization

Reinforcement Learning Beyond Q-Learning
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Tile Coding § APIENZA

 Form of coarse coding that is flexible and
computationally efficient -
* More tilings enable generalization generalizations

for uniformly

. offset tilings
outside the same box
Tiling1 — ___
Tiline 2 — [ | | |
ng S e e
Tiling 3
Ting | T i Four active
: [~ tiles/features
_e-_- — overlap the point Possible
" . |— and are used to generalizations
N B == : reprosent it for asymmetrically
N :___{4.__1_:___#__+_: offset tilings

renresented
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Radial Basis Functions § SaPENzA
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 Generalize coarse coding to continuous features

. s —¢i|?
xi(s) = exp (—” 252” )

i

¢ 9 8 o o o' 8 5 a o
28 8 8 8 8 8 3 F 3 3 B
VD G LSS RSty RU Y VS &8 Y 1l ST MYV Sy |
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